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Content of the talk

o Circuits made with Josephson junctions con-
nected by means of thin superconducting

wires: the rf~-SQUID:

1. The weakly coupled regime: sinusoidal Joseph-
son current;

2. The strongly-coupled regime: impossibility of dis-
entangle the junctions from the “environmental
modes” of the wires.

e 14+1 boundary Field theory description of
the rf-SQUID: physical constraints and bound-
ary conditions:

1. Primary fields and corresponding boundary in-
teractions for the rf-SQUID;

2. Scaling analysis near the weakly coupled fixed
point;

3. Scaling analysis near the strongly coupled fixed
point.

e A simple multi-junction generalization: the
dc-SQUID:

1. Primary fields and corresponding boundary in-

teractions for the dc-SQUID;

2. Scaling analysis near the weakly coupled fixed
point;

3. Scaling analysis near the strongly coupled fixed
point.

o Conclusions and further perspectives:

1. Josephson devices — 14 1-dimensional boundary
field theories for quantum wires with impurities/boundaries;



2. Engineering multi-wire/multi-impurity devices =
finite coupling IR-stable fixed points in the phase
diagram = multi junction devices with finite cou-
pling, IR-stable fixed points;

3. Perspectives: possible use as flux qubits.



Circuits made with Josephson
junctions connected by means of
thin superconducting wires.

. rf-SQUID

Figure 1: The rf-SQUID.

1. Lagrangian:
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2. ny is the superfluid density, m is the electron
mass, 1/e. is the characteristic inverse charging
energy per unit length of the loop, S = r x r is
the cross section of the wire, ¢ is the dielectric
constant of the medium the loop is embedded
within, R is the distance from a metallic screen,
E; is the Josephson energy of the junction.



3. Luttinger parameters and spinless Luttinger Hamil-
tonian:

Charging energy of the lead + inductive energy
of the lead + Josephson energy of the junction
=

e e 3 (52) o (522

—Ejcos[®(L,t) — ®(—L,t) + ¢]

with g = m\/n,S/(me.), u = \/nsSe./(4m), ¢ = ®/P;,
® = 2e/h, ®(z,t) = ®(z,t) — pz/(2L).




. de-SQUID

Figure 2: The dc-SQUID.



« The weakly-coupled regime

1. rf-SQUID: u(®})?/L/E; > 1 = large inductive en-
ergy of the ring = ”freezing” the collective exci-
tations (plasmons) in the phase field ®(z,t)

®(L,t) — ®(—L,t) ~ 0 mod 27 = Efp| ~ —E;cos(p)



e Strongly coupled regime

u(®})?/L/E; <1 = strong effect of phase fluctuations
of the order parameter = field theory approach.




Boundary Conformal Field

Theory description of the
rf-SQUID

« Basic fields of the noninteracting theory

1. Bosonic field and chiral components
1
V29

Mode expansion for the chiral fields

O(z,t) = [Or(x — ut) + ¢r(x + ut)

27p ) o N) ik (peu
¢L/R(xq:ut) = qL/R:F LL/R(:L,q:ut)_I_Z ; L/+()€ kn(zFut
n#0

with
lar/r, pr/rl =1 5 [ar/r(n), ap/r(n')] = Fndniw o
and
p1/rlGS) = ar(n)|GS) = az(—n)|GS) = 0 (n > 0)

Mode expansion for ®(z,t)

27 27r P

(n) kn (z—ut) aL(n) ik (z+ut)
; n + n ©

ﬁ\



Dual field

Oz, 1) = \/g[qu(a: —ut) — oz +ut)]

Mode expansion for O(z,t)

27 =~ 2m
O(z,t) =0y — —Px + —=gPut
i g 3 Meikn(w—ut) _ ar(n) pikn (z+ut)
2 n#0 n n
Notice

00(z,t) 100(z,t)  0®(z,t) 1 00(z,t)

I bz u Ot ’ Ox gu Ot

Current density

0P (z,t)
ox

i(z,t) = V2gu
Charge density

00(z,t) _ V29 0®(z,t)

pla,t) =2 ox u Ot
Hamiltonian
1= | g7 S lan(-nlan(n)+as(mar(-n)

Two-boundary theory (z = L,—L).



2. Primary fields

Voo(z,t) = expliQ®(z,t) + iQO(x,1)] :
Basic commutators
[ 0®(z,1)

5 ,VQQ(QS‘/, t)| = 2mQd(x — x')VQQ(a:’, t)

and
[ 00(z, 1)
oz

Vool t)| = 21Q6(z — ')V (', t)

= Vp.6(,1) changes the charge (P) by an amount
x @, the current (P) by an amount « Q.

3. Boundary conditions:
Energy conservation

dEs 102 9

a0 a@‘“w}‘”x’”:o

= boundary conditions for &(z,t)

gu0®(L, 1) . o B
2T 8:13 + EJSIH[CD(L,t) q)( L)t) + S0] -0
and
uob( Ly
o O + Ejy Sln[(I)(L,t) (I)( L,t) 4 90] —0

Charge conservation (continuity of the current)
=

08(L,t) 0B(—L,¢)

ox ox

= the tunnel boundary interaction can only de-
pend on ®(L,t) — ®(—-L,1)




4. Construction of boundary operators

z— =L =V, (2, t) — VP(2)

The allowed boundary operators depend on the
boundary conditions (M. Oshikawa, C. Chamon,
I. Affleck, “Delayed Evolution of Boundary Con-
ditions” - DEBC).



« The weakly coupled fixed point

1. Neumann-Neumann boundary conditions:

0D (L,t)  OP(—L,1)

E;— 0= =
I oz oz

=0

Consequences
oy ctan(n) +etkag(-n) =
— ) e_lk"LaR(n) +€anLaL(_n) —
implies

ko=57 (n€Z) ; ar(n) = (=1)"ar(-n) = a(n)

2. Boundary fields and boundary operators:

Boundary fields

27 p ( ) —i A ut
¢ ——ut = L)
(L, t) = ¢po + D) g ut +1 Tgoz — e
and
27 P (n) —zﬂut
P - — 2L)
(—L,t) = ¢o + oL g ut + 1 né:o( i)" o

(Primary field) Boundary operators

Vi (t) = expl+iQP(+L, 1))

Q,+
Remark: N-N Boundary conditions =
00(L,t) 0O(—L,t) 0
ot ot

= No boundary operators depending on O.



3. Correlation functions and scaling dimensions

Correlation functions

Ot
(VEDOVEL#)) ~uemnyrer — L0
[w(t—t)]

N N
<V(§,£(t)vcglﬁ):(t/)> ~u(t—t)/L<1 1

Scaling dimensions

)2
p _ (@)
QF‘: g

4. Josephson energy operator (junction energy - in-
teraction representation)

with

Scaling dimension of W,,(?)

H, =2n%/g



Additional interactions produced by O.P.E.’s, with
higher periodicity in ¢, according to

_Hn_Hn'+Hn+n'

7T_U Wn+n’ (t/)

! INAY]
Wn(t)Wn’(t) ~tl—t 2],

(t —1)

. Effective boundary interaction and running cou-
pling strengths

. 1 oo . .
iy=-53 {Be™ W, () + Ene ™ W (1)
n=1

Running couplings
1—2n%

gn = <i> 9 En

2ma

with a ~ ¢ short-distance cutoff.

Renormalization group equations

dg: 2
(L)L) = Bilgr, 92) = (1 - 5) g1+ 9192
dgo 8 2
din(ajag) Ba(g1,92) = (1 - ;) 92+ (91)
Solutions
(-3) 2
=00 ()7 o= E 1 (1)




6. Stability of the N-N fixed point:

g < 2 = irrelevant interaction (stable weakly cou-
pled fixed point): the theory is perturbative in
E; and, thus

|

@5

the same as from the ”classical” analysis.

1#) = -

8<HB>] _ 2eF s (27m>§ “in

0d c L

For g > 2 all the higher harmonics become rele-
1—-2
vant (for instance (g2(L)/g1(L)) (L%) ’.

The scaling stops at L, at which g;(L.) ~ 1, that
is



Figure 3: The Josephson current in the perturbative regime around the N-N
fixed point.

o The strongly coupled fixed point

1. Dirichlet boundary conditions:
Ey— o0 =

O(L,t)— (L, t)+p=2rk ; keZ
This implies
sin(k,L)[ar(n) + ar(—k,)] =0
and the eigenvalues of P, {P;}

%
P.=—-k——"—
k 2m

The boundary condition



0

S[®(L,t) = B(~L,1)] = 0

implies
sin(k,L)[ar(n) — ar(—k,)] =0
Thus
k, = %n ;s neZ

. Partition function at the strongly coupled fixed
point

Z = Trle ] = Z5Z[y)]

The factor Z; = Tr[e 7 *9(P)"] contains no relevant
informations concerning the boundary dynamics

1 gmu %) 2
Zlp| = exp[— —(——-i—k:)]
i 1%(q) k%:Z L\ 2
where n(z) = [132,(1 — z"), and ¢ = exp [—87].

Josephson current
10In ZD[ ]

Ilp] = — lim —

e, x ¢ — [¢]

where [¢] is the integer part of ¢ (in units of 27)
(“sawtooth-like” behavior.

. Relevant perturbation at the strongly coupled
fixed point



(0))

Figure 4: The Josephson current in the perturbative regime at the strongly
coupled fixed point.

Dirichlet boundary conditions

)
(L, t) = B(=L,8)] =0

= no W,-operators.

Mode expansion for the dual boundary field

zoO(L,t) = 00—7r]5—|—%Pgut—|—i\/§ 3 (—1)”Me—i%ut
n#0 n

O(—L,t) = O(L,t) + 2nP

with



Setting

o) = %[@(L,t) +O(=L,1)]

= most relevant boundary operators
VP (1) =: expliQO(t)) :
Most relevant boundary perturbation
Hy = —A"() + VY (#)]

. Correlation functions, scaling dimensions and renor-
malization group equations

Correlation functions

5 ~ o~

D D !

V8" OV () ~ua-rymr —[Wﬁjfi,;‘]g
L

Scaling dimension

Running couplings

_ L\ 3
3 = (_) A
2ma

Renormalization group equations

d\
d1n(L/Lo)

= A(A) = (1—%>/\



5. Physical meaning of Hp

P = P, = “zero-mode” (inductive) contribution
to the total energy

2
E(O):Lu<k ﬁ)
k L +27T
At p=2r+nm,l el

0 0
RO, = B

For instance, { = 0 = twofold degenerate energy
minimum, Py, P; (two eigenstates of the persistent
Josephson current operator P)

From the basic commutators

[P,: !Q0() :] =Q: e'Q00) .

the operators V") (1), V) (t) represent “jumps”
back and fro the minima, i.e., they represent the
(real-time version of) instanton solutions inter-
polating between the minima.

6. Stability of the Dirichlet fixed point

Solution of the renormalization group equations
g9
2

A =5 (£)

g > 2 = Hp is an irrelevant interaction (stable
strongly coupled fixed point): the theory is per-
turbative in A.



Figure 5: Eigenstates of the current operators for £ = 0.

For g < 2 Hp is a relevant interaction (unstable
strongly coupled fixed point). This drives the
system out of the strongly coupled fixed point.

Boundary field theory allows for a strightforward
description of any phase, no matter how deep
might be the entanglement between the junction
and the wires



Strong coupling

g<2

g>2

Weak coupling

Figure 6: Phase diagram of the rf-SQUID.

Two-junction generalization

« Basic fields and boundary interaction

1. “Normal” combinations and Hamiltonian
1

(I):t(iﬁ,t) = \/é

[(I)l(.CU, t) + (I)Q(—ZC, t)}

and
1
V2

In terms of these fields

% (6(1),18(:3,15))2 u (8@)(8(;,75))2]

O.(z,t) = —=[O1(z,1) £ Os(—1,1)]

_ 9 L
Hdc_Ea;i‘/—de



—Ej cos |V28_(L) + g] — Escos [\@CI)_(—L) — g
Only ®_ enters the boundary interaction
2. Boundary conditions
Current continuity
0 0P, (£L,t
—[®1(£L,t) — Po(FL,¢t)| =0 = 0%+ (+L,t) =0

ozx oz

Dynamical boundary conditions

gu 0®_(L, 1)

: el
o + V2E; sin [\@CD_(L,tH—Q] =0

and
gu0®_(—L,t)

: el
o on +\/§E2sml\/§q>_( L,t) 2]_0



« The weakly coupled fixed point

1. Neumann-Neumann boundary conditions
0®_(L,t) 0®_(—L,t)
ox N ox

As for the rf-SQUID at the weakly coupled fixed
point, the allowed boundary operators are

Fi=E=0= =0

Vg\g (t) =: exp[z'QCI)_(iLat)} :

Since N-N Boundary conditions + current conti-
nuity condition =

00+(L,t)  004(—L,t)
ot N ot

= No boundary operators depending either on
©,, or on O_.

2. Correlation functions and scaling dimensions

Correlation functions

N N dg+q'0
(v )(t)Vél,i(t'» S

N N
<VQ~(¢) (t)V(EI,;(t')) ~u(t—t)/Lk1 1

Scaling dimensions

L _ (Q)

Q:i g



3. Boundary interaction operator

Ee't Eye % (v
Hp = ———ViP(t) - =5 Vi)

B0 - By
2 ’ 2 ’
Even in this case additional interaction operators
(higher harmonics in ¢) are generated by O.P-
E.’s as, for instance
Vi (Ve (¢)

. n,
Wn,n' (t) ~ }/13 (t _ t,)hn+hn'_hn+nl

4. Running couplings and renormalization group equa-
tions

Running couplings

L\'s L\
g1 = <—> Ey 5 go= (—> Ey
2ma 2ma

Renormalization group equations

m = Bi(g1) = (1 - 3) 91

Solutions



5. Stability of the weakly coupled fixed point

g < 2 = both interactions are irrelevant = stable
weakly coupled fixed point.

The theory is perturbative in F; and, thus

- [8<<HB>2>

2eF Fs (27ra>§ ) [CI)]
= sin

oD c L o

the same as for the rf~-SQUID, but now I x E;Es.

For g > 2 all the higher harmonics become rele-
vant, as for the rf-SQUID.

The scaling stops at L, determined by the lower
one between F; and FEs, that is

g

— u \ 91
L,=2 —
ma (aE)

where £ = min{E, Es}.



o The strongly coupled fixed point

1. Dirichlet-Dirichlet boundary conditions
El, Ey — 00 =

V20_(L,t) + g = 2mny 5 V20_(=L,t)+ g — 27n,

Supplementing these boundary conditions with
current continuity

0®,(L,t) B 0®.(—L,t)
ozx B oz

allows for constructing the pertinent boundary
operators as for the rf-SQUID.

2. p-depending term in the partition function

=0

Z = Tr[e_ﬂHdc} = Z5Z[p]

Again, the factor Z; = Tr[e~#529(”)"] contains no
relevant informations on the boundary dynamics

216l = i 5, [‘ 52 (Cant k’”

Josephson current

as for the rf-SQUID.
3. Most relevant perturbation at the D-D fixed point

The D-D boundary conditions allow for the bound-
ary operators



VSR () =: expli©4 (£L, 1)) -

Acting with Véﬂ) (t) = n1 — n1 — Q, ng unchanged;
Acting with Véf)_) (t) = na = ny—Q, n; unchanged.
. Correlators and scaling dimensions

Correlation functions

5 -~

D D !

(VELOVELE)) ~at-rynn [—ﬁﬁiﬁrio]"
L

D D
<VC§,:I:) (t) ch/,q): (t,)> Nu(t—t')/L<<1 5Q+Q,70

Scaling dimension

This time: two different instanton excitations
(Vfl))i(t)) that make the D-D fixed point unsta-
ble for ¢ < 2 = same phase diagram as for the
rf-SQUID.



Strong coupling

g<2

g>2

Weak coupling

Figure 7: Phase diagram of the dc-SQUID.

Conclusions and further
perspectives

e 1+1-dimensional boundary field theories as
a theoretical framework for Josephson de-
vices

1. Superconducting thin wires — Luttinger liquid
(1+1 -dimensional CFT)

2. Junction — tunneling between two Luttinger
liquids (boundary interaction).



« More complex boundary interaction = finite-
coupling IR fixed points (3-wire junction:
Affleck, Chamon, Oshikawa)

Fermionic version

~
g
<
o
AN
A~
AN

Figure 8: AOC device and phase diagram for p =7, 1 < g < 3.

1. Josephson device = Bosonic realization of a sim-
ilar phase diagram



o Application: stable qubits with optimal quan-
tum interference

1. “N-D” phase diagram =- either stable D fixed
point (2-state qubit), but irrelevant instantons
(fragile quantum intereference), or relevant in-
stantons (robust quantum interference), but rel-
evance of higher energy eigenstate from the full
spectrum

2. Possible solution: stable fixed point



