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Foreword

m This talk is based on

[ FG,S.Lottini, M.Panero, A.Rago, Random percolation as a
gauge theory, Nucl.Phys.B 179 (2005) 255
[arXiv:cond-mat/0502339].

[3 S.Lottini,FG, The glue-ball spectrum of random percolation
PoS LAT2005:292 [arXiv:hep-lat/0510034]

[[ FG, Where is the confining string in random percolation
[arXiv:hep-lat/0601011]

m plus work in progress with Stefano Lottini and Pietro Giudice
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Motivation
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* The main features of the confining phase of whatever gauge

theory do not depend very much on the nature of the gauge group
G

I Area decay of large Wilson loops (W (R, T)) oc e 7RT

] Universal, G independent, 1/R and 1/R?3 corrections of the
confining potential

V(R) = = limr oo AT ~ gR — 202D _ 2028
[ glue-ball spectrum:
Tot —387(3)SU(2),D=3+1
- —365(3)SU(3),D=3+1
- =3.08(3) 2 ,D=2+1
[1 Deconfining temperature
Te/v/o = 0.596(4) + 0.453(30)/N? ,SU(N), D =3+ 1.
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* Also the proposed confinement mechanisms (magnetic monopole
condensation , center vortices, confining string,... ) do not depend
crucially on the gauge group

* There is a good numerical support of these mechanisms but there
is no proof

* The various mechanisms are mutually inter-related, but the logical
implications are not completely clear
m Search for a drastically simplified version of a confining gauge
theory in which
0 The area decay of the Wilson loops is true by construction
0 The gauge group is trivial
0 Check whether the other general properties of the confining phase
follow




Percolation as a gauge theory

Percolation as a gauge theory
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Random Percolation

* Percolation studies random graphs in a lattice. generated by
switching on each link (or site) with probability p

* Near the percolation threshold p = p. the connected components
(clusters) of these random graphs show universal features

* The theoretical description of the percolation processes is
conventionally given in terms of the cluster sizes and most of the
universal scalings deal with size distribution of clusters

* The point of view which is taken here is different. We focus on
topological entanglement of random clusters and use it to
describe how percolation theory can be considered as a paradigm
of confining gauge theory.
.
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Observables

* The most basic observables of any gauge theory are the Wilson
loops W,,(C)
* Two inputs:

» a closed path ~
» A gauge configuration C

% one output :
» Areal or complex number W, (C)

C — W,(C)
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The setup

Define the following purely geometric setting

Generate a sample of random graphs {G1, G,, ... } simply by
populating each of the links (or sites) of a (cubic) lattice
independently with occupation probability p.

The physical observables of this system, that we call still Wilson

operators \W.,, are associated to arbitrary loops ~ of the dual
lattice and obey the following rule

0 W, (Gi) = 1if no cluster of the configuration G; is topologically
linked to ~;

0 W,(Gi) = 0 otherwise;

0 (W,) =limp_ ZF:l W, (Gi)/n.
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Topological linking of W

W=1

]

W=0

D Q C
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L
linking of W depends only on closed paths
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L
linking of W depends only on closed paths

[ ]

[J Adding or removing
bridges does not
change the value of W

[0 The invariance of W
under this local
transformation is
similar to a gauge
transformation

_ Dblue
bond
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* When p < pc only finite
clusters form

O If the linear size of v is
much larger than the

typical size of the
clusters W, obeys a

perimeter law

O when p > pc an infinite,
percolating cluster form
= large Wilson loops
obey an area law
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Percolation as a gauge theory Confinement and scaling

Confinement and scaling
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Area law for square Wilson loops
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5 Vo4 b = 0.0331(2)
[ 6666 x2/d.o.f| = 0.6
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Confinement and scaling

Scaling and Universality of o

0.1

o 0.01¢f

0.001

- 00 BCC bond
& + SC bond ]
’ O SC site i
P :
0.01 0.
P=Pe S
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Confinement and scaling

The expected behaviour of ¢ in the scaling region is

o(p) =S (p — pc)®

with
v = 0.8765(16)(2)

Lattice Pc S x?/d.o.f

SCsite | 0.3116081(7)(2) | 3.370(8) | 1.15
SCbond | 0.2488126(5) | 8.90(3) | 0.30
BCC bond | 0.1802875(10) | 22.07(2) | 0.98

)
" INFN
G

Roughening in percolation 18/44



Percolation as a gauge theory Deconfinement at finite T

Deconfinement at finite T
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Deconfinement at finite T

'] The percolation process explains also deconfinement at finite
temperature as a dimensional reduction.

[0 Notice: percolation threshold pc is a decreasing function of
space-time dimension D

percolating cluster

finite clusters

D|1 2 3 ~
pc |1 3 0.2488 X )‘—/}/
T<T, T>T,
[J When T reaches a threshold value T. the percolating cluster A
crumbles away e
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Deconfinement at finite T

Lattice | 1/T Py Tc/\/o

SC site 7 | 0.3459514(12) | 1.494(11)
BCCbond | 3 | 0.21113018(38) | 1.497(10)
BCChbond | 4 | 0.20235168(59) | 1.506(11)
SChbond | 5 0.278102(5) | 1.480(12)
SChbond | 6 0.272380(2) | 1.492(13)
SChbond | 7 0.268459(1) | 1.500(13)
SCbond | 8 0.265615(5) | 1.504(14)

* At T; the system is critical = deconfining transition expected to
belong to the same universality class of 2 D percolation

Polyakov loops at %

‘ ‘ Critical indices:

_ 4
V=3

R

_ 5
=2z
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Deconfinement at finite T

= (PO)P(R)) x R zatT =T,

0.95} e ]
0.85 e 1

0.75 /// b

0.65

<P(0)P(R)>
AN

-5/24

[m] = =




Percolation as a gauge theory

“Magnetic” monopole condensation

Monopole condensation
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“Magnetic” monopole condensation

m t' Hooft and Mandelstam conjecture: The confining vacuum is a
dual superconductor
[l There should be a “disorder” operator ®(x) such that

» itis not local in the gauge variables

» (®) = 0in deconfined vacuum

» (®) # 0in confined vacuum monopole condensation

m In standard percolation: two-point function G(x,y) = probability
that the sites x and y are in the same cluster

[0 G(x,y) cannot be rewritten in terms of Wilson loops: Connectivity
(path between x and y) does not depend on linking properties
(closed paths)

O limy_ ., G(0,x) =0 iff p < pc

00 limyx— oo G(0,x) # 0 iff p > p¢

[ This strongly suggests G(x,y) = (®(x) ®(y))

Roughening in percolation 24 /44



p < p. Monopole mass

0.18 I T | T T

017 . .
016F ‘
0.15 - e =
0.14 | o
0.13 | o .

0.12 - o i
ma = Mo (pc — p)” '
0.11 - Mo = 8.36(2) = Mo/ /o = 2. 80( ) oy 7

0.1 R

009 1 1 1 1 1 .
0.237 0.238 0.239 0.24 0.241 0.242 0.2
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p > pc Glue-ball spectrum : Mg/\/o = 4.17(3)
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Roughening

Roughening and string vibrations
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Roughening The two confining phases

The two confining phases of gauge theories
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The two confining phases

JC clLE AWV
1/ B

deconfined phase
for abelian gauge group G Area law

confinement D—2

(W,) o Ry ¢, e Phl=oA
A A, = minimal area of ¥ : 9% =~

numerical experiments R, = linear size of v

rough phase Cy = shape function

(Crectangle = [ﬁ(it/r)]_¥)

roughening transition

character expansion

(W,) oce™ 1y[=o Ay

smooth, confining phase




The two confining phases

Percolation
g ~1-p

deconfined phase deconfined phase A

for abelian gauge group G = /
confinement percolating phase

numerical experiments ]

rough phase confinement
roughening transition

character expansion no charcter expansion
smooth, confining phase G=1
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Fitto cR7 exp(—bR — o R?2)

0.012
0.01
0.008

a(P) -

0.006
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Fitto cexp(—bR — 0 R?)

0.012 —
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Quantum string fluctuations

m A suitable quantity which is sensible to the universal shape effects
is the function o "
W (L—n,L+n
R(n, L) = eXp(fhz()‘)W

m asymptotically (large L and L — n) (Gaussian limit) R becomes
only a function f(t) of the ratio t = |’

1
2

n(i)jvi-t
n (I%)

R(n,L) — f(t) =

n = Dedekind eta function
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Numerical test
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Quantum string fluctuations

Numerical test
1.25 T T
— (x)
¢ - 'wwr258.dat’ u 1:2:3
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Roughening A strong coupling expansion

A strong coupling expansion
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Roughening A strong coupling expansion

A strong coupling expansion?

empty links | | | | | | |

NENENN /

I

Wilson loop

weight of configuration:

N= minimal area encircled by W
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Roughening A strong coupling expansion

strong coupling expansion

empty links | | | | | | |

L T
occupied linkJ | | | + | | %V
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Roughening A strong coupling expansion

strong coupling expansion

arbitrary link
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Roughening A strong coupling expansion

strong coupling expansion

arbitrary link
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generic term

A =area of the deformation
V = volume of the deformation
my = multiplicity of the surface diagram

mg = number of graphs with V bonds drawn inside the deformed
volume in such a way that switching on any link orthogonal to a
plaquette yields percolation through the deformed volume

rT‘IGF\J\/l

OooOooo
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strong coupling expansion in percolation

o =—log(1-p)—2p(1-p)*—12p?(1-p)°+4p?(1-p)®-96 p3(1—p)®—

—90p*(1—p)® —908p*(1 —p)1°+96p3(1 —p)° — 2304 p8(1 —p)1°—

~1776p°>(1 - p)*® + 72p3(1 - p)*° + O[(1 - p)¥*]
diverges!
O The percolating phase is rough in the whole range p. < p < 1
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Conclusions

Conclusion
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* Random percolating clusters of any percolating process captures
the major features of the confining vacuum of gauge theories

O Deconfinement at finite T

0 Magnetic monopole condensation

O Non-trivial glue-ball spectrum

O universal shape effects due to confining string fluctuations

O The percolating phase is rough in the wholerangep. < p < 1
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