Evidence for diquarks from lattice QCD

Biagio Lucini

with C. Alexandrou and Ph. de Forcrand hep-lat/0509113 and hep-lat/0609004

SMFT, Bari, September 2006

- Diquarks from phenomenology
- Details of the calculations
- Structure
- Masses
- Conclusions

Diquarks

Outline

- can explain the $\Delta I = 1/2$ rule in weak non-leptonic decays
- can explain some phenomena observed in deep inelastic scattering experiments
- are Cooper pairs of colour superconductivity
- can explain stability of some exotica (e.g. X and Y) and their general absense from the spectrum
- can explain some features of excited baryon spectrum

Flux tube structure in baryons

Diquarks in hadrons

Flux tube structure in baryons

Diquarks in hadrons

Flux tube structure in baryons

- qq (antisymmetrized in colour) behaves like \bar{q}

Diquarks in hadrons

Outline

Flux tube structure in baryons

- qq (antisymmetrized in colour) behaves like \bar{q}
- one-gluon exchange: $V_{qq} = \frac{1}{2} V_{q\bar{q}}$ attractive

Complete Classification (R. Jaffe, hep-ph/0409065)

Diquarks are a combination of quarks in the colour antitriplet

$$3\otimes 3=\bar{3}\oplus 6$$

Quantum numbers and operators					
J^P	Colour	Flavor	Operator		
0+	3	3	$\bar{q}_{C}\gamma_{5}q$, $\bar{q}_{C}\gamma_{0}\gamma_{5}q$		
1+	3	6	$ar{m{q}}_{m{C}}ar{\gamma}m{q}$, $ar{m{q}}_{m{C}}\sigma_{0i}m{q}$		
0-	<u>3</u>	6	$ar{q}_{C}q,ar{q}_{C}\gamma_{0}q$		
1-	3	3	$ar{m{q}}_{m{C}}ar{\gamma}\gamma_{m{5}}m{q},ar{m{q}}_{m{C}}\sigma_{ij}m{q}$		

The parity even flavor antisymmetric spinless combination is the most attractive channel in this sector

Phenomenology

Outline

Spin-colour effective interaction

$$\mathcal{H} = \alpha_{s} \sum_{i \neq j} M_{ij} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \vec{\lambda}_{i} \cdot \vec{\lambda}_{j}$$

Predictions

- parity-odd states heavier (suppressed in non-relat. limit)
- $M(0^+) < M(1^+)$: 0^+ is "good" diquark, while 1^+ is "bad"
- ΔM from spin-spin interaction $\propto \frac{1}{m_1 m_2}$ for heavy quarks

Diquark masses from phenomenology

Using the effective spin-colour Hamiltonian one obtains

 $extit{M}_{\mathbb{Q}} \simeq 320 \ ext{MeV} \qquad ext{and} \qquad extit{\Delta} extit{M}_{\mathbb{Q}\mathbb{Q}^*} \simeq 200 ext{MeV}$

As M_q increases, $M_{\mathbb{Q}}$ increases and $\Delta M_{\mathbb{Q}\mathbb{Q}^*}$ decreases

 $M_{\mathbb{Q}} \simeq M_{\mathrm{S}} + 500$ MeV and $\Delta M_{\mathbb{QQ}^*} \simeq 150$ MeV if one of the quarks is a strange quark

Diquark masses from phenomenology

Using the effective spin-colour Hamiltonian one obtains

 $extit{M}_{\mathbb{Q}} \simeq 320 \ \mathsf{MeV} \qquad \mathsf{and} \qquad \Delta extit{M}_{\mathbb{Q}\mathbb{Q}^*} \simeq 200 \mathsf{MeV}$

As M_q increases, $M_{\mathbb{Q}}$ increases and $\Delta M_{\mathbb{QQ}^*}$ decreases

 $M_{\mathbb Q} \simeq M_{\mathbb S} + 500$ MeV and $\Delta M_{\mathbb Q\mathbb Q^*} \simeq 150$ MeV if one of the quarks is a strange quark

Lattice setup

Problem: diquarks are coloured

i.e. diquark in the background colour field of static quark

Baryon propagator

$$C(\vec{x},0;\vec{x},t) = \left\langle \mathbb{Q}(\vec{x},t) P \exp\left(-ig \int_0^t A_0(\vec{x}, au) \, d au\right) \mathbb{Q}^\dagger(\vec{x},0) \right\rangle$$

Lattice setup

Problem: diquarks are coloured

i.e. diquark in the background colour field of static quark

Baryon propagator

$$C(\vec{x},0;\vec{x},t) = \left\langle \mathbb{Q}(\vec{x},t) P \exp\left(-ig \int_0^t A_0(\vec{x}, au) \; \mathrm{d} au \right) \mathbb{Q}^\dagger(\vec{x},0)
ight
angle$$

Lattice action

Path integral

$$Z = \int \left(\mathcal{D} \textit{U}_{\mu}(\textit{i})\right) \left(\det \textit{M}(\textit{U}_{\mu})\right)^{N_{f}} \mathrm{e}^{-\mathsf{S}_{g}\left(\textit{U}_{\mu
u}\left(\textit{i}
ight)
ight)}$$

with

Outline

$$U_{\mu}(i) = \mathsf{Pexp}\left(ig\int_{i}^{i+a\hat{\mu}} \mathsf{A}_{\mu}(\mathsf{x})\mathsf{d}\mathsf{x}
ight)$$

and

$$U_{\mu
u}(i)=U_{\mu}(i)U_{
u}(i+\hat{\mu})U_{\mu}^{\dagger}(i+\hat{
u})U_{
u}^{\dagger}(i)$$

Gauge part

$$S_g = eta \sum_{i=1}^{N} \left(1 - rac{1}{N} \mathcal{R} extbf{e}(U_{\mu
u}(i))
ight) \qquad , \qquad ext{with } eta = 2N/g^2$$

Take the naive Dirac fermions and add an irrelevant term that

goes like the Laplacian

$$M_{\alpha\beta}(ij) = (m + \frac{4r}{\delta_{ij}}\delta_{\alpha\beta} - \frac{1}{2}\left[(r - \gamma_{\mu})_{\alpha\beta}U_{\mu}(i)\delta_{i,j+\mu} + (r + \gamma_{\mu})_{\alpha\beta}U_{\mu}^{\dagger}(j)\delta_{i,i-\mu}\right]$$

This formulations breaks explicitely the chiral symmetry

Define the hopping parameter

$$\kappa = \frac{1}{2(m+4r)}$$

Chiral symmetry recovered in the limit $\kappa \to \kappa_{\it c}$ ($\kappa_{\it c}$ to be determined numerically)

Quenched approximation

For an observable \mathcal{O}

Outline

$$\langle \mathcal{O} \rangle = rac{\int \left(\mathcal{D} U_{\mu}(i) \right) \left(\det M(U_{\mu}) \right)^{N_f} f(M) \mathrm{e}^{-S_g(U_{\mu\nu}(i))}}{\int \left(\mathcal{D} U_{\mu}(i) \right) \left(\det M(U_{\mu}) \right)^{N_f} \mathrm{e}^{-S_g(U_{\mu\nu}(i))}}$$

Assume det $M(U_{\mu}) \simeq 1$ i.e. fermions loops are removed from the action

The approximation is exact in the $m \to \infty$ limit

Results are to be taken only as indications

Summary of the calculations

Wilson fermions, quenched: $3 \times \beta$, $3 \times \kappa$ (heavy,medium,light) unquenched (courtesy of the SESAM collaboration)

β	N_f	size	#conf	$a(r_0)$ (fm)	κ	m_{π} (MeV)
5.8	0	16 ³ 32	2-500	0.136	0.156-0.159	690-910
6.0	0	16 ³ 32	2-500	0.093	0.153-0.155	620-900
6.2	0	20^340	200	0.068	0.151-0.1523	570-870
5.6	2	24 ³ 40	100	$\sim 0.1(m_N)$	0.1575	530

I. Wavefunctions

II. Masses

I. Wavefunction: density-density correlator

Fix distance from static quark \rightarrow fixed background field Look at angular distribution

I. Wavefunction: density-density correlator

$$C_{
m tot}(r) = \int \langle N |
ho^u
ho^d | N
angle \ \sin \theta {
m d} \theta {
m d} \phi \ \equiv \int {
m d} (\cos \theta) C(\theta, r), \ \
ho^q = : \ ar q \gamma_0 q : \
ho \ {
m correlation} \ \Leftrightarrow \ \ {
m flat \ in \ } \cos \theta$$

Angular distribution: Lattice vs. Continuum

Scalar at various r

Outline

Robust w.r.t. the distance from the static source?

Spatial correlations

Excited states contamination?

Vary separations between source – measurement – sink:

Better groundstate

→ more correlation in scalar diquark, less in vector diquark

Diquark size

Very large size for vector; $\mathcal{O}(1)$ fm for scalar box size \sim 1.5 fm \rightarrow wrap-around effects

Size vs distance from static quark

Details of the calculations

Very stable (slowly increasing?) Lighter quarks seem to give larger size – systematics when size $\gtrsim L_{\rm s}/2$?

Size summary

Outline

From hep-lat/0509113

Conclusions

- Scalar: size ≤ 1 fm robust vs background field
- Vector: size ≥ 2 fm

- at small distances: $V_{qq} = \frac{1}{2} V_{q\bar{q}}$
- at large distances:

Diquarks are more loosely bound than mesons

Correlation functions involving a static quark are very noisy → need sophisticated techniques to isolate the ground state as quickly as possible

- HYP smearing for the temporal links entering in the construction of the static propagator
- Wuppertal smearing on the sink and the source using HYP smeared spatial links for the Wuppertal smearing function

Smearing

Effective masses: 3 groups

Outline

Static quark → mass UV divergent Look at mass differences

Good, bad and worse

Outline

Controlling systematic effects

M(vector) - M(scalar) vs. a and m

β	κ	$\Delta M_{\mathbb{Q}\mathbb{Q}^*}$ (MeV)
5.8	0.1530	67(7)
5.8	0.1575	100(15)
6.0	0.1530	115(20)

- At our masses diquarks are quite heavy
- Our results for the mass difference are not incompatible with theoretical estimates
- Lattice artifacts for the mass difference are under control

m(vector) - m(scalar) versus pion mass

Ansatz $\Delta m = \frac{c_1}{c_2 + m_{\pi}^4} \rightarrow \text{extrapolation} \sim 150 \text{ MeV}$ (200 MeV expected) Larger in QCD? (K. Orginos, hep-lat/0510082)

Joniciasions

- All measurements consistent with predictions.
- ullet Scalar diquark \sim robust versus background field
- → unchanged in colour superconductivity*
 - → fit diquark inside nucleon?
- brain g = inquark = inquare = inquare inquare inquare.

 Domaily donaity correlators, peworful gauge invariance in a construction of the constructi

- All measurements consistent with predictions.
- Scalar diquark ~ robust versus background field
 → unchanged in colour superconductivity
- Tighter binding, smaller size for lighter quarks?
 → fit diquark inside nucleon?
- Outlook: static \bar{q} + diquark + diquark \rightarrow diquark-diquark interactions
- Density-density correlators: powerful gauge-invariant tool for investigating hadron structure

- All measurements consistent with predictions.
- Scalar diquark ~ robust versus background field
 → unchanged in colour superconductivity?
- Tighter binding, smaller size for lighter quarks?
 → fit diquark inside nucleon?
- Outlook: static \bar{q} + diquark + diquark \rightarrow diquark-diquark interactions
- Density-density correlators: powerful gauge-invariant tool for investigating hadron structure

- All measurements consistent with predictions.
- Scalar diquark ~ robust versus background field
 → unchanged in colour superconductivity?
- Tighter binding, smaller size for lighter quarks?
 → fit diquark inside nucleon?
- Outlook: static \bar{q} + diquark + diquark \rightarrow diquark-diquark interactions
- Density-density correlators: powerful gauge-invariant too for investigating hadron structure

- All measurements consistent with predictions.
- Scalar diquark ~ robust versus background field
 → unchanged in colour superconductivity?
- Tighter binding, smaller size for lighter quarks?
 - → fit diquark inside nucleon?
- Outlook: static \bar{q} + diquark + diquark \rightarrow diquark-diquark interactions
- Density-density correlators: powerful gauge-invariant tool for investigating hadron structure

- All measurements consistent with predictions.
- ullet Scalar diquark \sim robust versus background field
 - → unchanged in colour superconductivity?
- Tighter binding, smaller size for lighter quarks?
 - → fit diquark inside nucleon?
- Outlook: static q
 + diquark + diquark → diquark-diquark interactions
- Density-density correlators: powerful gauge-invariant tool for investigating hadron structure

