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M Consider the series given by




THE FRACTAL SELF-SIMILAR
Cont’d

M |t is fractal because it satisfies the relation

@ Define the initial
approximation

3 Solving for x we get
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® Then The Cascade y, IS
given by:
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The cascade velocity is given by
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@ The regime of the self-similar renormalization is
to consider the passage from one approximation
to another as a motion with respect to the
approximation number k=0, 1,2,

@ The trajectory y, (f, s) of this dynamical system
|s) bijective to the approximation sequence P, (X,
S

@ The attracting fixed point of the cascade
trajectory is, by construction, bijective to the limit
of the apprOX|mat|on sequence P, (x, S), that is,
it corresponds to the sought

function.
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B One can deal with continuous time t rather than
the discrete time k.

@ The evolution equation for the flow reads
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M Thus, the self-similar
approximation is
given by

M The applicability of the method is governed by the
stabilizers

Or their images
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M The stability condition is given by
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® The most stable aproximant is obtained if m, (x, s) =0, or

@ Otherwise, the minimum occurs at s=«. Therefore, the
minimum is given by
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B3 If it happens that all m,'s are less than 1 for all s’s
are oo, then the resummed series is given by the
bootstrap formula




Applications to an example with
known exact result for comparison

W Consider the Lambert W function defined by

@ The series expansion of W (1 + x) is
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Applications to an example with

known exact result cont'd

B Atx=3, W(1+x)=1.202 2 and the perturbative result (up
x3)is 1. 918 9. The error percent is 59.616%.

M et us apply the transformation,:

YW ((1+X))=W(1+Xx)+cC

where c is used as a control function too.

@ Apply the fractal self-similar method to Y(W (1 + x))
and find ¢ which makes all the |[mk (x, s)|._... less than
one and then apply Y~ to the obtained bootstrap
formula we get the result W (1 + x) = 1. 1798 with the
error percent 2.0697%.



@ Consider the Lagrangian density:

M@ This model is not Borel Summable due to the existence of
classical soliton solution

@ In the equivalent quasi-field theory, the interaction term is

@ Up to g3, we have the Feynman diagrams (non-cactus) shown
in Fig.1.



Applications to a non-Hermitian
Field theory model

B Accordingly, the perturbation
corrections to the Effective
Potential are
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Applications to a non-Hermitian
cont’d
M To keep the equivalence, we use the fact that the

bare parameters are independent of the scale {.
Accordingly, we obtain the result
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The resummed Vacuum energy E, as a function of the coupling G

E, is the resummation of the field dependent terms only.



Applications to a non-Hermitian
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@ The resummed E, agrees qualitatively with
pervious results concerning bound states

( see Carl M. Bender, Stefan Boettcher, H.
F. Jones, Peter N. Meisinger, and Mehmet
Simsek,Phys.Lett.A291, 197 (2001).



The kleinert Algorithm for Borel
Resummation

W Suppose that the asymptotically onverging
series to be summed is given by

® the large order behavior of the series is known
to be
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W After the change of basis, E(G) is written as

@ The functions /,(G) are chosen to have the Borel
representation:

@ where [ZH are constrained in such a way that /,(G)
satisfies both large order and stron coupling
behaviors.
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W After some algebraic steps one find that
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will do the Job.

1 a, can be found to be
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@ With no loss of generality, let us write
E(G,x) as:

This series coincides with ours for x=1.

@ To accelerate the convergence of the
above series, we apply the fractal self-
similar to the above series and at the end
of the day we get back to x=1.



Applications

1. Critical Exponents of 3-dimensional XY model.

# Consider the series (Erratum-ibid. B319 (1993) 545
Phys.Lett. B272 (1991) 39-44)
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Critical Exponents cont’d

Up to &2 Borel result
v=0.65413
Up to &3 v=0.65879
Up to ¢4 v=0.66527
Up to ¢° v=0.66604

¥ The best experimental result for



Critical Exponents cont’d

Up to e°

THE FRACTAL SELF-
SIMILAR-BOREL algorithm

v=0.67079 (a=-0.01237




Critical Coupling of The ¢#,,,
theory

B For the effective potential of the ¢*,., , the
perturbation series up to G3 is of the form:
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W The critical coupling calculated from the
perturbative series is G_=1.17.

@ The critical coupling calculated from the Borel
resummation is G_=1.



Critical Coupling Cont'd

B The perturbative effective potential up to G2 for G = 0.7,
G=117and G=14.




Critical Coupling Cont'd

@ The effective potential as a function of the coupling G for
both S and BS phases obtained from the fractal self-similar-
Borel Method. The obtained G_=1.6259 (Lattice is 1.625).




@ The Borel method needs many terms of
perturbation series to achieve reliable
result.

@ Borel method supplemented by the self-similar
method accelerates the convergence of the
resummed result and give reliable results for the
critical coupling of the ¢4, theory even with the
input perturbation series up to G3only.



@ For the critical exponents of the XY model
our algorithm is consistent with the best
experimental result obtained so far for the
a exponent of the specific-heat peak in
superfluid helium, found in a satellite
experiment with a temperature resolution
of nanoKelvin.
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