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external fields & Bloch’s boundary conditions

Bloch’s boundary conditions (b.b.c.) are defined as

P(x+el)=€%p(x), 0<f<2r  0=0

in a gauge theory this is equivalent to “change” the gauge field

to the interaction it has been added an external filed
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the gauge crystal (i)

In order to reduce finite volume effects in early days lattice simulations, Martinelli, Parisi, Petronzio, Rapuano
(1983) first considered a “gauge crystal”

J @ very very small lattices (5% x 10)

@ strong fluctuations in the meson masses

@ freezing of the gauge configurations in some metastable
states
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the gauge crystal (ii)

each gauge configuration is used 3 x 3 times by transforming the boundary gauge links
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Bloch’s boundary conditions, a brief history

@ inthe large N limit: [Gross & Kitazawa Nucl. Phys. B206 (1982)]
[Kiskis, Narayanan & Neuberger hep-1at/0203005]
[Kiskis, Narayanan & Neuberger hep-lat/0308033]

@ at finite temperature: [Roberge & Weiss Nucl. Phys. B275 (1986)]
[many others]

@ in the Schrédinger Functional: [Jansen & al. hep-lat/9512009]
[many others]

[Bucarelli & al. hep-1at/9808005]

[Guagnelli & al. hep-lat/0303012]

@ Aharonov-Bohm effect (x—PT, suggesting lattice)
[Bedaque nucl-th/0402051]




flavoured mesons with continuous momenta

In [hep-1at/0405002] we coupled the external field to the flavour
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spatial momenta are quantized according to
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two—particle scattering states

@ for p.b.c. Luscher has derived the quantization condition Commun. Math. Phys. 104 (1986) 177
Commun. Math. Phys. 105 (1986) 153

Nucl. Phys. B354 (1991) 531

Nucl. Phys. B364 (1991) 237
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@ scattering phases can be calculated “like” hadron masses
@ an integral representation of the Zyo(1, qz) is obtained by ¢(—function regularization
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lellouch—ltscher formula

@ et us introduce into our theory another boson: the “kaon”

@ let us switch off the interaction hamiltonian Hy = [, _, d®x Lw(x)

K
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@ when the energy of the scattering state is equal to the kaon mass (L ~ 5.5fm) one gets
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@ there have been many attempts to cope with such a large volume

Lin & al. hep-lat/0104006
Christ & Kim hep-lat/0210003
Kim, Sachrajda & Sharpe hep-lat/0507006
Christ, Kim & Yamazaki hep-lat/0507009



lischer equivalence theorem (i)

Let us consider two spinless bosons of equal mass such that

@ the dynamics can be described by a scalar A¢* theory
@ reflection symmetry (¢ — —¢) is unbroken
@ one particle states are odd under this symmetry

it holds an effective Schrédinger equation
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1 (r) is the Bethe—Salpeter wavefunction

where the true energy is € = 24/m? + mE

Ug(r, ') is exponentially vanishing with r,r’



lischer equivalence theorem (ii)

the system is equivalent to a non-relativistic quantum mechanical one up to corrections exponentially vanishing
with the volume

@ the hamiltonian is H=—-n+V(r)
@ the potential is of finite range V(r>R)=0
@ the potential is periodic V(|l[r+nL|]) = V(r)

(A + k2) Yo(r) = V(Ya(r),  pa(r+nL) = & My (r)

Schrédinger equation with a muffin thin

otential:
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nucleus nucleus

Korringa—Kohn—-Rostoker theory




the green function method

let us consider the infinite volume green function

(A + kz) g(r — ro; K?) = 6(r — 1)

the formal solution is given by the greenian is given by
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quantization condition (i)

from Yo(r) = [ dro go(r — ro; K2)(Lry + K)ebo (Fo)
by using the simple identity gAY = pAg+V - (gV — pVQ)

one gets the energy quantization condition
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ds — 1 K? -
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This condition can be rewritten by expanding in spherical harmonics the wavefunction

Po(r) =D am(0, )R(r; k) Yin(fo) ~ Ri(r, k) = cos &,(k) ji(kr) — sin5,(k) m(kr)  r>R
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quantization condition (ii)

after substitution one gets an homogeneous linear system
qcos &(k) am + Z Mlm,l’m’ sin &y (K)oy =0
I'm’
that has non trivial solutions if and only if

det [M,my,/m/(e, k) + K&y 8 COL 5/(’()] =0

Making the assumption that all the scattering phases vanish except the S—wave, one gets:
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what about the real world. . . (i)

@ in hep-lat/0409154 we claimed that the results discussed so far where useful for K — 77 decays

@ in hep-lat/0411033 Sachrajda & Villadoro pointed out that we where wrong

we are breaking isospin (not /3)

for one particle states
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@ partially twisting (see [Flynn & al. hep-lat/0506016] for a numerical study)
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what about the real world. . . (ii)

@ in the case of two particle states we have mixing

@ in the neutral two—pion sector we get a mixing [|77),_, «— |l77),_,

@ Sachrajda & Villadoro argument goes as follows:
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@ by measuring (in principle) the “red” coefficients one can build the interpolation operators that have no
overlap with the energy eigenstates (|| Eo) and ||E1) )

@ but then there is no way to use this informations . ..



two states model (i)

@ since /3 is unbroken so we can stay within the neutral two—pion subspace
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@ in the center-of-mass reference frame one can in principle have a two—pion neutral state that is a
superposition of the two possible pion combinations

G (r) A0 .
P(r) = =R = Ry(r)
oo(r) pi=o(r)
@ the boundary conditions for the doublet field can be written as
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two states model (ii)

@ the Schrddinger equation for this system is

A+ K 0 [ Vi () Vi—oo(r) )} _
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or, in compact notation
[(A+k2) —Vlp=0
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@ the Schrodinger equation can be written also in the isospin basis, i.e.
P -~ om0 Viea(r) 0
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@ the greenian is given by
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two states model (jii)

@ the quantization condition can be derived as before and is given by
0gs,(x —y) . avi(y)

oy i(y) — 95, (x — Y)Ty =0

@ the S—wave wavefunction can be written as
Co C tan d2(k)
P(Y) = jo(ky) — no(ky)
Co Co tan do (k)

@ the greenian can be written as
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two states model (iv)

@ we get again a linear system

Z00(0)+2Z00(0 V2[Z40(8)— Z0(0
qotgs — 20002000 Y2z (0) 200 cotan 5, .
V2[Zg0(0)— Zgg(0)] 2Z00(0)+Z00(0) =
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@ that can have a solution different from the trivial one only if

Zo0(0) +2200(0) 2Z00(0) + Z00(0) Z00(0) — Z00(0) 12
qctgos — — g7 qctgdo — 3,372 =2 37372
@ similar formulas have been obtained in [He, Feng & Liu hep-lat/0504019]

[Detmold & Savage hep-lat/0403005]



two states model (v)

@ a somehow deeper insight in the previous formula can be gained by diagonalizing the symmetric matrix

where
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two state model (vi)

@ the determinant quantization condition for 6 = =

@ the two eigenvalues for 6 = =




two state model. . . conclusions

By assuming negligible finite volume corrections one can

@ choose two values of 6 such that the energy of the scattering state is fixed (. .. different volumes!)
@ solve together the two corresponding quantization conditions

@ extract the / = 2 and | = 0 scattering phases.

@ the mixing can be calculated (tan ¢). .. further generalization of LL formula?



