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external fields & Bloch’s boundary conditions

Bloch’s boundary conditions (b.b.c.) are defined as

ψ(x + ei L) = eiθiψ(x), 0 ≤ θi < 2π θ0 = 0

in a gauge theory this is equivalent to “change” the gauge field

a 2a 3a ... Na a 2a 3a ... Na

to the interaction it has been added an external filed

∇µ(θ)ψ(x) =
1
a

[λµ Uµ(x)ψ(x + a µ̂)− ψ(x)] λµ = e
iaθµ

L



the gauge crystal (i)

In order to reduce finite volume effects in early days lattice simulations, Martinelli, Parisi, Petronzio, Rapuano
(1983) first considered a “gauge crystal”

very very small lattices (53 × 10)

strong fluctuations in the meson masses

freezing of the gauge configurations in some metastable
states

P̂i = 〈
P

x Tr
QNi−1

n=0 U(x + nei , i)〉



the gauge crystal (ii)

each gauge configuration is used 3× 3 times by transforming the boundary gauge links

U(Ni − 1, i) 7−→


U(Ni − 1, i), e
2πi

3 U(Ni − 1, i), e−
2πi

3 U(Ni − 1, i)
ff

∑
= (1 + e

2πi
3 + e−

2πi
3 ) = 0

Z 3L

0
dx ψ(x)D̂(x)ψ(x)

D(x+L)=D(x)7−→
Z L

0
dx
h
ψ(x)D̂(x)ψ(x) + ψ(x)D̂(x)ψ(x) + ψ(x)D̂(x)ψ(x)

i



Bloch’s boundary conditions, a brief history

in the large N limit: [Gross & Kitazawa Nucl. Phys. B206 (1982)]
[Kiskis, Narayanan & Neuberger hep-lat/0203005]
[Kiskis, Narayanan & Neuberger hep-lat/0308033]

at finite temperature: [Roberge & Weiss Nucl. Phys. B275 (1986)]
[many others]

in the Schrödinger Functional: [Jansen & al. hep-lat/9512009]
[many others]

[Bucarelli & al. hep-lat/9808005]
[Guagnelli & al. hep-lat/0303012]

Aharonov–Bohm effect (χ–PT, suggesting lattice)
[Bedaque nucl-th/0402051]
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flavoured mesons with continuous momenta

In [hep-lat/0405002] we coupled the external field to the flavour

spatial momenta are quantized according toR
dp eip·(x+ei L)ψ(t ; p) =

R
dp ei(p·x+θi )ψ(t ; p)

eipi L = eiθi

pi =
θi
L + 2πn

L , n ∈ Z 3
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two–particle scattering states

for p.b.c. Lüscher has derived the quantization condition Commun. Math. Phys. 104 (1986) 177
Commun. Math. Phys. 105 (1986) 153

Nucl. Phys. B354 (1991) 531
Nucl. Phys. B364 (1991) 237

tan δ0(k) = − tanφ(q),

q =
kL
2π
, tanφ(q) = −

qπ3/2

Z00(1, q2)
,

Z00(s, q
2) =

1
√

4π

X
n∈Z3

1
(n2 − q2)s , < (s) >

3
2
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scattering phases can be calculated “like” hadron masses

an integral representation of the Z00(1, q2) is obtained by ζ–function regularization

Zlm(1, q2) =
1
√

4π

X
|n|<Λ

Ylm(n)

n2 − q2
+ (2π)3

Z ∞

0
dt
»

etq2
KΛ

lm(t, 0)−
δl0δm0

(4π)2t3/2

–



lellouch–lüscher formula

let us introduce into our theory another boson: the “kaon”

let us switch off the interaction hamiltonian HW =
R

x0=0 d3x LW (x)

K
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when the energy of the scattering state is equal to the kaon mass (L ' 5.5fm) one gets‚‚‚A(k)
‚‚‚2

= 8π


q
∂φ(q)

∂q
+ k

∂δ0(k)

∂k

ff
k=k

„
mK

k

«3 ‚‚‚AL(k)
‚‚‚2

there have been many attempts to cope with such a large volume Lin & al. hep-lat/0104006
Christ & Kim hep-lat/0210003

Kim, Sachrajda & Sharpe hep-lat/0507006
Christ, Kim & Yamazaki hep-lat/0507009



lüscher equivalence theorem (i)

Let us consider two spinless bosons of equal mass such that

the dynamics can be described by a scalar λφ4 theory

reflection symmetry (φ 7→ −φ) is unbroken

one particle states are odd under this symmetry

it holds an effective Schrödinger equation

−
1

2µ
4ψ(r) +

1
2

Z
dr′ UE (r, r′) ψ(r′) = Eψ(r)

where

ψ(r) is the Bethe–Salpeter wavefunction

the true energy is E = 2
p

m2 + mE

UE (r, r′) is exponentially vanishing with r,r′



lüscher equivalence theorem (ii)

the system is equivalent to a non–relativistic quantum mechanical one up to corrections exponentially vanishing
with the volume

the hamiltonian is Ĥ = −4 + V (r)

the potential is of finite range V (r > R) = 0

the potential is periodic V (‖r + nL‖) = V (r)

“
4 + k2

”
ψθ(r) = V (r)ψθ(r), ψθ(r + nL) = eiθ·n

ψθ(r)

note:

Schrödinger equation with a muffin thin
potential:

Korringa–Kohn–Rostoker theory

nucleus nucleus



the green function method

let us consider the infinite volume green function

“
4 + k2

”
g(r− r0; k2) = δ(r− r0)

the formal solution is given by

ψθ(r) =

Z ∞

−∞
dr0 g(r− r0; k2)V (r0)ψθ(r0)

=

Z L

0
dr0 gθ(r− r0; k2)V (r0)ψθ(r0)

=

Z R

0
dr0 gθ(r− r0; k2)V (r0)ψθ(r0)

the greenian is given by

gθ(r; k2) =
X

n∈Z3

eiθ·ng(r− nL; k2)

= −
1
L3

X
n∈Z3

eikn·r

k2
n − k2

kn =
2πn

L
+
θ

L

in the end we get

ψθ(r) =

Z R

0
dr0 gθ(r− r0; k2)(4r0 + k2)ψθ(r0)



quantization condition (i)

from ψθ(r) =
R R

0 dr0 gθ(r− r0; k2)(4r0 + k2)ψθ(r0)

by using the simple identity g4ψ = ψ4g +∇ · (g∇ψ − ψ∇g)

one gets the energy quantization condition

Z
∂SR

dS0

"
gθ(r− r0; k2)

∂ψθ(r0)

∂r0
− ψθ(r0)

∂gθ(r− r0; k2)

∂r0

#
r0=R

= 0

This condition can be rewritten by expanding in spherical harmonics the wavefunction

ψθ(r) =
X

lm

αlm(θ, k)Rl (r ; k)Ylm(r̂0) Rl (r , k) = cos δl (k) jl (kr)− sin δl (k) nl (kr) r ≥ R

and the greenian

gθ(r− r0; k2) = k
X

lm

jl (kr) Ylm(r̂)nl (kr0) Y∗lm(r̂0)

+
X

lml′m′
jl (kr) Ylm(r̂)Mlm,l′m′ (θ, k

2) jl′ (kr0) Yl′m′ (r̂0)



quantization condition (ii)

after substitution one gets an homogeneous linear system

q cos δl (k) αlm +
X
l′m′
Mlm,l′m′ sin δl′ (k)αl′m′ = 0

that has non trivial solutions if and only if

det
ˆ
Mlm,l′m′ (θ, k) + kδll′δmm′ cot δl (k)

˜
= 0

Making the assumption that all the scattering phases vanish except the S–wave, one gets:

tan δ0(k) = − tanφ(θ, q),

q =
kL
2π
, tanφ(θ, q) = −

qπ3/2

Z00(1; θ; q2)
,

Z00(s; θ; q2) =
1
√

4π

X
n∈Z3

1h`
n + θ

2π

´2 − q2
is

< (s) >
3
2 -2
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what about the real world. . . (i)

in hep-lat/0409154 we claimed that the results discussed so far where useful for K −→ ππ decays

in hep-lat/0411033 Sachrajda & Villadoro pointed out that we where wrong

we are breaking isospin (not I3)

S =

Z
d4x u(x)

»
/D − i

6 θu

L
+ m

–
u(x)

+

Z
d4x d(x)

»
/D − i

6 θd

L
+ m

–
d(x)

for one particle states

4m2
π±

m2
π±

7→
3m2

πe−mπL

(2πf 2
πmπL)3/2

4m2
π0

m2
π0

7→
3m2

πe−mπL

(2πf 2
πmπL)3/2

 
2
3

3X
i=0

cos θi − 1

!

partially twisting (see [Flynn & al. hep-lat/0506016] for a numerical study)

∆fK±
fK±

7−→

− m2
πe−mπL

f2π (2πmπL)3/2

` 9
4

´
− m2

πe−mπL

f2π (2πmπL)3/2

“
1
2
P3

i=1 cos(θi ) + 3
4

”
− m2

πe−mπL

f2π (2πmπL)3/2

“P3
i=1 cos(θi )− 3

4

”



what about the real world. . . (ii)

in the case of two particle states we have mixing

in the neutral two–pion sector we get a mixing ‖ππ〉I=2 ←→ ‖ππ〉I=0

Sachrajda & Villadoro argument goes as follows:

〈0‖π0(t)π0(t)σ(0) ‖0〉 = A00 e−tE0 + B00 e−tE1 + . . .

〈0‖π+(t)π−(t)σ(0) ‖0〉 = A+− e−tE0 + B+− e−tE1 + . . .

by measuring (in principle) the “red” coefficients one can build the interpolation operators that have no
overlap with the energy eigenstates (‖E0〉 and ‖E1〉 )

but then there is no way to use this informations . . .



two states model (i)

since I3 is unbroken so we can stay within the neutral two–pion subspace0B@
‚‚π+π−

¸
‚‚‚π0π0

E
1CA =

0@ q
1
3

q
2
3

−
q

2
3

q
1
3

1A
| {z }

R̂

0@ ‖I = 2〉

‖I = 0〉

1A

in the center-of-mass reference frame one can in principle have a two–pion neutral state that is a
superposition of the two possible pion combinations

ψ(r) =

0@ ψ+−(r)

ψ00(r)

1A = R̂

0@ ψI=2(r)

ψI=0(r)

1A = R̂ψI(r)

the boundary conditions for the doublet field can be written as

ψ(x + ei L) =

„
eiθi 0
0 1

«
| {z }

B̂(θi )

ψ(x)

ψI(x + ei L) = R̂−1B̂(θi )R̂ ψ(x) = B̂I(θi ) ψ(x)



two states model (ii)

the Schrödinger equation for this system is»„
4 + k2 0
0 4 + k2

«
−
„

V+−,+−(r) V+−,00(r)
V00,+−(r) V00,00(r)

«–
ψ(r, t) = 0

or, in compact notation
[
“
4 + k2

”
| {z }

K̂

−V̂ ]ψ = 0

the Schrödinger equation can be written also in the isospin basis, i.e.h
K̂ − V̂I

i
ψI = 0 V̂I = R̂−1V̂ R̂ =

„
VI=2(r) 0
0 VI=0(r)

«

the greenian is given by

ĝBI (x− y) =
X

n

B̂I(θn)ĝ(x− y− nL) =

 
gθ+2g0

3

√
2 gθ−g0

3√
2 gθ−g0

3
2gθ+g0

3

!



two states model (iii)

the quantization condition can be derived as before and is given by

∂ĝBI (x− y)

∂y
ψI(y)− ĝBI (x− y)

∂ψI(y)

∂y
= 0

the S–wave wavefunction can be written as

ψ(y) = j0(ky)

0@ c2

c0

1A− n0(ky)

0@ c2 tan δ2(k)

c0 tan δ0(k)

1A

the greenian can be written as

ĝBI (x− y) =
kj0(kx)

4π

"
n0(ky)−

j0(ky)

2π3/2kL

 
Z00(θ)+2Z00(0)

3

√
2[Z00(θ)−Z00(0)]

3√
2[Z00(θ)−Z00(0)]

3
2Z00(θ)+Z00(0)

3

!#



two states model (iv)

we get again a linear system

0@ q ctgδ2 −
Z00(θ)+2Z00(0)

3π3/2

√
2[Z00(θ)−Z00(0)]

3π3/2√
2[Z00(θ)−Z00(0)]

3π3/2 q ctgδ0 −
2Z00(θ)+Z00(0)

3π3/2

1A0@ c2 tan δ2

c0 tan δ0

1A = 0

that can have a solution different from the trivial one only if

»
qctgδ2 −

Z00(θ) + 2Z00(0)

3π3/2

– »
qctgδ0 −

2Z00(θ) + Z00(0)

3π3/2

–
= 2

»Z00(θ)− Z00(0)

3π3/2

–2

similar formulas have been obtained in [He, Feng & Liu hep-lat/0504019]
[Detmold & Savage hep-lat/0403005]



two states model (v)

a somehow deeper insight in the previous formula can be gained by diagonalizing the symmetric matrix

„
A M
M B

«
=

0@ q ctgδ2 −
Z00(θ)+2Z00(0)

3π3/2

√
2[Z00(θ)−Z00(0)]

3π3/2√
2[Z00(θ)−Z00(0)]

3π3/2 q ctgδ0 −
2Z00(θ)+Z00(0)

3π3/2

1A

=

„
cosφ − sinφ
sinφ cosφ

«„
A + M tanφ 0
0 B − M tanφ

«„
cosφ sinφ
− sinφ cosφ

«

where

tanφ =
−(A− B) +

p
(A− B)2 + 4M2

2M

the two eigenvalues are given by

(A + B) +
p

(A− B)2 + 4M2

2

(A + B)−
p

(A− B)2 + 4M2

2



two state model (vi)

the determinant quantization condition for θ = π
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two state model. . . conclusions

By assuming negligible finite volume corrections one can

choose two values of θ such that the energy of the scattering state is fixed (. . . different volumes!)

solve together the two corresponding quantization conditions

extract the I = 2 and I = 0 scattering phases.

the mixing can be calculated (tanφ). . . further generalization of LL formula?


