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Overview

Eguchi-Kawai reduced models and the Zy* symmetry:

periodic vs. twisted boundary conditions;
Phase structure of “small” N TEK models: good behaviour;
Phase structure of “large” N TEK models: symmetry breaking;

Implications for the study of large N gauge theories.




Eguchi-Kawai (EK) Models: construction

SU(N) YM in a _ SU(N) YM in a

N —o0

L* periodic lattice 14 periodic lattice

~ A~ o~ ~

4
Sex[U] = bN Y ReTr (I _ UMUVUJUJ) >

p>v

Prescription:

1) Uy(x) — U,

2) O[U] — O[U] = O[U]

3) (O[U] )w = ( O[U] )rex




EK Models: justification

heuristic: Approaching the N = oo theory via translational invariant
(constant) gauge fields: Witten’s Master field;

perturbative: Reduced models have the same planar diagrams as

the original Wilson’s lattice gauge theory;

nonperturbative: Reduced models have the same Schwinger-

-Dyson equations as the original Wilson’s lattice gauge theory,

up to contact terms involving open lines:

G




EK Models: Zy* symmetry

The action of the EK model:

4
Sux[U] = bN " ReTr (I - U,U,U,'0,") > 0
u>v
has a global Zy* symmetry:

v, — z,U, , 2, € LN

which is spontaneously broken due to collapse of eigenvalues of U, in

the weak-coupling regime — contact terms do not vanish!

O~0




Twisted Eguchi-Kawai (TEK) Models

SU(N) YM in a _ SU(N) YM in a

L* periodic lattice V7> 1% twisted lattice

4
Srex[Usn] = bN 3 ReTr (1 — Z (W)U U, U, UJ) >0

p>v
Zpy(0) = Zyy(n)* = e "R v
symmetric twist: n,, =L, Vu>v

colour conversion: N?2 = L4

Wilson loops: W(I,J)= +Tr z., v u u, Mo,
Polyakov loops: P,=xTr U e




TEK Models: Zx* symmetry

In weak-coupling, the link matrices fluctuate around the classical
extrema (I',) of the TEK model, the so-called twist-eaters:

Stex[T;n] =0 = T,0,I,T,=2,(n)

which preserve the Zy* symmetry:

1
P,(a) = NTI‘ ', =darL

because the eigenvalues collapse symmetrically on the unit circle.




Phase structure of small-N TEK models

(N < 81)




For N < 81, the real part of the plaquette shows the typical behaviour

expected for this model:

SU(64): real traces of plaquettes
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Also, the real and imaginary parts of the traces of link variables are

zero in average for all couplings...

SU(64): (xReTr U,) SU(64): (&ImTr U,)
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. even though at intermediate couplings the magnitude of the trace

changes significativelly.

SU(64): magnitudes of the trace of link variables
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The imaginary part of the trace of elementary plaquettes follow the

same behaviour:

SU(64): imaginary traces of plaquettes

|
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which can be explained by the absence of C'P-invariance in Stgrk.




But for N = 81 the signal is stronger for intermediate couplings, even

though it vanishes faster (as expected) for small couplings:

imaginary traces of plaquettes




Phase structure of large-N TEK models

(N > 100)




For N > 81, we observed the existence of several transitions affecting
the plaquettes in the TEK model:

SU(144): real traces of plaquettes SU(144): hot start (detailed)
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For N > 81, we observed the existence of several transitions affecting
the plaquettes in the TEK model:

SU(144): real traces of plaquettes SU(144): cold start (detailed)
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Each transition is usually associated with the breaking of one Zy
symmetry. This can be seen from the expectation values of the traces
of each link matrix; other open lines also show the same behaviour.

SU(144): real trace of link matrices SU(144): imaginary trace of link matrices
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Each transition is usually associated with the breaking of one Zy
symmetry. This can be seen from the expectation values of the traces
of each link matrix; other open lines also show the same behaviour.

SU(144): real trace of link matrices SU(144): imaginary trace of link matrices
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Each transition is usually associated with the breaking of one Zy
symmetry. This can be seen from the expectation values of the traces
of each link matrix; other open lines also show the same behaviour.
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Each transition is usually associated with the breaking of one Zy
symmetry. This can be seen from the expectation values of the traces
of each link matrix; other open lines also show the same behaviour.
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The eigenvalue spectrum of the link matrix associated with the Zn

symmetry breaking suffers a dramatic change at these transitions:

SU(144): 8 = 0.22




The eigenvalue spectrum of the link matrix associated with the Zn

symmetry breaking suffers a dramatic change at these transitions:

SU(144): 8 =0.29




The eigenvalue spectrum of the link matrix associated with the Zn

symmetry breaking suffers a dramatic change at these transitions:

SU(144): 8= 0.36




The eigenvalue spectrum of the link matrix associated with the Zn

symmetry breaking suffers a dramatic change at these transitions:

SU(144): 8 = 0.41




The eigenvalue spectrum of the link matrix associated with the Zn

symmetry breaking suffers a dramatic change at these transitions:

SU(144): 8 = 0.45




The real and imaginary parts of individual plaquettes tend to a

common value, which is an element of Zy:

SU(144): traces of individual plaquettes
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The existence of extrema other than the twist-eaters is a consequence
of the stationarity condition:

—~P,,) - U, (P, — P, U, =0

where P,, = Z,,(n)U,'U,'U,U,; and the stability condition:

2T
COS W(nw — M) 2> 0

These conditions allow several possible classes of extrema, some of

which survive the large N limit:
twist-eaters: P, =1
fluxons: P, =2Z,,(n—m)

diagonals(?): P,, = Z,,(n)




Conclusions

e TEK models for “small” N are well-behaved with respect to the
LGT-TEK correspondence, but they lack information about the

large N physics, e.g. deconfining phase transition.

“Large” N TEK models are ill-behaved numerically: they tend to

fall in vacua lacking the correct symmetries of the LGT-TEK

correspondence. Ergodicity problem? Or new surviving extrema?

Possibly, an artifact of the full reduction; other formulations are
in principle freed of such problems, e.g. quenched EK or partial

reduction.




