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Overview

• Eguchi-Kawai reduced models and the ZN
4 symmetry:

periodic vs. twisted boundary conditions;

• Phase structure of “small” N TEK models: good behaviour;

• Phase structure of “large” N TEK models: symmetry breaking;

• Implications for the study of large N gauge theories.



Eguchi-Kawai (EK) Models: construction

SU(N) YM in a = SU(N) YM in a

L4 periodic lattice N→∞ 14 periodic lattice

SEK[Ũ ] = bN

4∑

µ>ν

ReTr
(
I − ŨµŨνŨ†

µŨ†
ν

)
≥ 0

Prescription:

= =

L
a

a

1) Uµ(x) → Ũµ

2) O[U ] → Õ[Ũ ] = O[Ũ ]

3) 〈 O[U ] 〉W = 〈 Õ[Ũ ] 〉TEK



EK Models: justification

heuristic: Approaching the N = ∞ theory via translational invariant

(constant) gauge fields: Witten’s Master field;

perturbative: Reduced models have the same planar diagrams as

the original Wilson’s lattice gauge theory;

nonperturbative: Reduced models have the same Schwinger-

-Dyson equations as the original Wilson’s lattice gauge theory,

up to contact terms involving open lines:
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EK Models: ZN

4 symmetry

The action of the EK model:

SEK[U ] = bN

4∑

µ>ν

ReTr
(
I − UµUνUµ

†Uν
†
)
≥ 0

has a global ZN
4 symmetry:

Uµ → zµUµ , zµ ∈ ZN

which is spontaneously broken due to collapse of eigenvalues of Uµ in

the weak-coupling regime =⇒ contact terms do not vanish!
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Twisted Eguchi-Kawai (TEK) Models

SU(N) YM in a = SU(N) YM in a

L4 periodic lattice N→∞ 14 twisted lattice

STEK[U ; n] = bN

4∑

µ>ν

ReTr
(
I − Zµν(n)UµUνUµ

†Uν
†
)
≥ 0

Zµν(n) = Zνµ(n)
∗

= e−i 2π
N

nµν

symmetric twist: nµν = L , ∀µ > ν

colour conversion: N2 = L4

Wilson loops: W (I, J) = 1

N
Tr Zµν

IJUν
IUµ

JUµ
†IUν

†J

Polyakov loops: Pµ = 1

N
Tr Uµ

L



TEK Models: ZN

4 symmetry

In weak-coupling, the link matrices fluctuate around the classical

extrema (Γµ) of the TEK model, the so-called twist-eaters:

STEK[Γ; n] = 0 =⇒ ΓµΓνΓµ
†Γν

† = Zµν(n)
∗

which preserve the ZN
4 symmetry:

Pµ(α) =
1

N
Tr Γµ

α = δαL

because the eigenvalues collapse symmetrically on the unit circle.
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Phase structure of small-N TEK models

(N < 81)



For N < 81, the real part of the plaquette shows the typical behaviour

expected for this model:

hot start
cold start

SU(64): real traces of plaquettes
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Also, the real and imaginary parts of the traces of link variables are

zero in average for all couplings...

hot start
cold start

SU(64): 〈 1

N
ImTr Uµ〉

b

1.00.80.60.40.20.0

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03
hot start

cold start

SU(64): 〈 1

N
ReTr Uµ〉

b

1.00.80.60.40.20.0

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03



... even though at intermediate couplings the magnitude of the trace

changes significativelly.

hot start
cold start

SU(64): magnitudes of the trace of link variables
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The imaginary part of the trace of elementary plaquettes follow the

same behaviour:

strong coupling
hot start

cold start

SU(64): imaginary traces of plaquettes
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which can be explained by the absence of CP -invariance in STEK.



But for N = 81 the signal is stronger for intermediate couplings, even

though it vanishes faster (as expected) for small couplings:

SU(81)
SU(64)

imaginary traces of plaquettes
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Phase structure of large-N TEK models

(N ≥ 100)



For N > 81, we observed the existence of several transitions affecting

the plaquettes in the TEK model:

weak coupling
strong coupling

hot start

SU(144): hot start (detailed)
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For N > 81, we observed the existence of several transitions affecting

the plaquettes in the TEK model:

weak coupling
strong coupling

cold start

SU(144): cold start (detailed)
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SU(144): real traces of plaquettes
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Each transition is usually associated with the breaking of one ZN

symmetry. This can be seen from the expectation values of the traces

of each link matrix; other open lines also show the same behaviour.

SU(144): imaginary trace of link matrices
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SU(144): real trace of link matrices
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Each transition is usually associated with the breaking of one ZN

symmetry. This can be seen from the expectation values of the traces

of each link matrix; other open lines also show the same behaviour.

SU(144): imaginary trace of link matrices
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SU(144): real trace of link matrices
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Each transition is usually associated with the breaking of one ZN

symmetry. This can be seen from the expectation values of the traces

of each link matrix; other open lines also show the same behaviour.

SU(144): imaginary trace of link matrices
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SU(144): real trace of link matrices
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Each transition is usually associated with the breaking of one ZN

symmetry. This can be seen from the expectation values of the traces

of each link matrix; other open lines also show the same behaviour.

SU(144): imaginary trace of link matrices
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SU(144): real trace of link matrices
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The eigenvalue spectrum of the link matrix associated with the ZN

symmetry breaking suffers a dramatic change at these transitions:

SU(144): β = 0.22
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The eigenvalue spectrum of the link matrix associated with the ZN

symmetry breaking suffers a dramatic change at these transitions:

SU(144): β = 0.29
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The eigenvalue spectrum of the link matrix associated with the ZN

symmetry breaking suffers a dramatic change at these transitions:

SU(144): β = 0.36
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The eigenvalue spectrum of the link matrix associated with the ZN

symmetry breaking suffers a dramatic change at these transitions:

SU(144): β = 0.41
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The eigenvalue spectrum of the link matrix associated with the ZN

symmetry breaking suffers a dramatic change at these transitions:

SU(144): β = 0.45
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The real and imaginary parts of individual plaquettes tend to a

common value, which is an element of ZN :

SU(144): traces of individual plaquettes
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The existence of extrema other than the twist-eaters is a consequence

of the stationarity condition:

δSTEK[U ; n] = 0 =⇒
∑

µ6=ν

[(Pµν − Pνµ) − Uν(Pµν − Pνµ)Uν
†] = 0

where Pµν = Zµν(n)Uµ
†Uν

†UµUν ; and the stability condition:

cos
2π

N
(nµν − mµν) ≥ 0

These conditions allow several possible classes of extrema, some of

which survive the large N limit:

twist-eaters: Pµν = 1

fluxons: Pµν = Zµν(n − m)

diagonals(?): Pµν = Zµν(n)



Conclusions

• TEK models for “small” N are well-behaved with respect to the

LGT-TEK correspondence, but they lack information about the

large N physics, e.g. deconfining phase transition.

• “Large” N TEK models are ill-behaved numerically: they tend to

fall in vacua lacking the correct symmetries of the LGT-TEK

correspondence. Ergodicity problem? Or new surviving extrema?

• Possibly, an artifact of the full reduction; other formulations are

in principle freed of such problems, e.g. quenched EK or partial

reduction.


