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Forests &
trees

Saguaro cacti forest on hillside, West Unit.
Saguaro National Park, Arizona, USA.



Let G=(V,E) be a finite undirected graph with
vertex set V and edge set E.

Za(q,v) = Z Qk(‘é) H Ve

ACE cecA

whereqg andy, — (v )eep are commuting
Indeterminates, andk A) denotes the number o
connected componergts In the subgraph (V,A)



ZG’(Q? V)

IS the multivariate Tutte polynomial of G
alias Potts model (for integer q)

with Boltzmann weight S
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e with Hamiltonian
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(Fortuin-Kasteleyn)



inthe limit ¢ — 0 atfixed w=v/qg

lim ¢~V Zg(q.qw) = Fa(w)
q—

where Fe(w Z H We

ACE ecA
Ched-F=0

IS the generating polynomial of spanning forests

c(4) = k(4) = |V]| + |A]

IS the cyclomatic number (no. of independent
cycles)



A forest Is a subgraph of G If it contains no cycles
and is called spanning If its vertex set Is exactly V



the limit

lim AE=VIE-(Aw) = Tg(w)

e

where T (w) = Z HTHE

ACE ccA
E(A)=k(G)
RIRZEE=—()
IS the generating polynomial of spanning trees
(spanning forests with the maximal number of

edges)



A tree Is a subgraph of G if it Is connected and
contains no cycles, and is called spanning If its
vertex set Is exactly V.



The matrix-tree theorem (1847)

Gustav Robert
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(electrical circuit theory)

Ann. Phys. Chem. 72, 497 (1847)



For ;| £ jet R ﬁbe the sum of.wﬁ over all

edges 3 that connect_?_ to_j

The (weighted) Laplacian L matrix for the graph G
Is defined by

N =200 ey
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Let L(1) be the matrix obtained from L by deleting
the i-th row and column, then

det L(z) = Ty (W)

independently from the root | (which in electrical-
circuit language Is the choice of the ground)



Grass field Grassmann field

Introduce at each
vertex | a pair of
Grassmann
variables
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wlab = E [— W Wi Y j T WUy ] Y _I;]

We must have both fields at each vertex, lines
must end In a root by a green line, but If there Is
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green lines mush finish somewhere: at the
root!

Only one connected component can remain,
therefore each configuration is a tree.



Principal-minors matrix-tree theorem
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where the sum runs over all spanning forests
composed of r disjoint trees, each of which
contains exactly one of the root vertices
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A Grassmann representation f
unrooted spanning forests
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Let
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for each connected subgraph I — (V. £y )

Let us try to evaluate

If the subgraphs have one or more vertices In
common this integral vanishes
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The integral can be written as All the edges of £ — Ui-—u E}-, must be
sum over forests rooted at the absent from these forests, since otherwise two
vertices of ,. _ or more of the root vertices would lie in the
e = Uz Vg same component.

On the other hand, by adjoining the edgesfqgf
these forests can be put into one-to-one
correspondence

with what we shall call L -forests

—|




A typical spanning I*forest
configuration on a portion of the
square lattice.

Root subgraphs are the single-
vertex graph and the square-
shaped graph.

e —

I- forests are spanning subgraphs in G whose

edge set Containé and which, after deletion
. ‘T : .

of the edgesin , leaves a forest in which

each tree cofifponent contains exactly one

vertex from . Vr
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Main result
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Appllcatlon u=-t
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since for each tree ]

/ D(y,¥) exp [-*q‘i-*L i S E o nda=r ] E Wi Vi j]
| g (L))

= ¢V Fg(w/t)

we obtain the generating function of unrooted
spanning forests with a weight t for each
component



Is there a symmetry to fix this
coupling constant relation?

P Py g
.--;--I-"“-""J.n-1uh'll.-¢.-‘{f"“ A Lhs,
k]

=

¥ i S

At

ELT iyl



Mapping onto Lattice O - Models
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Recall that the avector model consists of spins
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where

7 Is the temperature



Low-temperature perturbation theory Is obtained
by writing ( and expanding In powers c%f )

Taking into account the Jacobian,
the effective Hamiltonian is
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When N — — 1, the bosonic field =
has . components,
2 .
and so can be replaced by a Grassmann pair
If we make the substitution

Bt i)

Higher powers of  vanish due to the nilpotence
of the Grassmann fields and we obtain the
spanning-forest if we identify t=-T, u=T
(anti-ferromagnetic N-vector model)



Supersimmetric formulation
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An alternate mapping can be obtained by
Introducing at each site, the superfield

—
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with scalar product

ok s

This corresponding 5 -model,
IS Invariant under the supergroup OSP(1]2)



Continuum Ilimit
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Suppose that the graph G Is a regular 2-D lattice
with weight __“for each nearest-neighbor pair.
We can then read off,
from known results on the N-vector model
the RG flow for the spanning-forest model on
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S. Caracciolo and A. Pelissetto: Nuclear Physics B455 (1995) 619
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o the positive coefficient of the  term indicates that for
the model is perturbatively asymptotically free. It is
attracted to the infinite-temperature fixed point, hence is
massive and OSP(1]|2)-symmetric

o for o the model Is attracted to the free-fermion
‘ﬂked pomt at t=0, and hence is massless with central
charge c=-2,

with the OSP(1|2) symmetry spontaneously broken

for we expect that the model will again be

L rhéisswe with the OSP(1|2) symmetry restored



More specifically, for t>0 it is predicted
that the correlation length diverges as
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Nmerical results based on transfer matrices and
finite-size scaling (for the Potts model), are
consistent with the nonperturbative validity of the
asymptotic-freedom predictions.

J.-L. Jacobsen, J. Salas, A.D. Sokal, cond-mat/0401026
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Perspectives

Our fermlpnlc model
T NIV
could b > the most
viable :{ igle
rlgorou
nonpert
of asym
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We are
nonpert
of the e
betwee
theory &
OSP(1/2) sigma model
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