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Terreoclycrion)

e Understanding the interior of CSQO’s

e Study of the QCD phase diagram at
T~0 and high p

Asymptotic region in p fairly well
understood: existence of a CS
phase. Real question: does this

type of phase persists at relevant | .}
densities ( ~5-6 p,)? ot
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e Mini review of CFL and 2SC phases
e Pairing of fermions with different Fermi momenta

e The gapless phases g2SC and gCFL
e The LOFF phase and its phonons
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Study of CS back to 1977 (Barrois 1977, Frautschi 1978,
Bailin and Love 1984) based on Cooper instability

At T ~ 0 a degenerate fermion gas 1s unstable

Any weak attractive interaction leads to
Cooper pair formation
» Hard for electrons (Coulomb vs. phonons)

> Easy 1n QCD for di-quark formation (attractive
channel 3) B3R3=336)



In QCD, CS easy for large u due to asymptotic
freedom

At high p, m, my, m, ~ 0, 3 colors and 3 flavors
Possible pairings: <O‘\|/f‘a\|1?b ‘0>

*» Antisymmetry in color (o, B) for attraction

** Antisymmetry in spin (a,b) for better use of the
Fermi surface

*» Antisymmetry in flavor (i, j) for Pauli principle



Favorite state CFL (color-flavor locking)
(Alford, Rajagopal & Wilczek 1999)

<O \VaL\']bL‘O> < \VaR\VbR‘O> AEZOLBC‘C;abC

Symmetry breaking pattern
SU(3), ®SU(3), @ SUB), = SUB),.



What happens going down with p? If p <<m_ we get
3 colors and 2 flavors (2SC)

<O‘\|]:L\|IIEL ‘O> - AgoLB38ab

SU(3). ® SU(2), ®SU(2), = SU(2). ® SU(2), @SU(2),

But what happens in_real world 2.




® M not zero
(no free energy cost

e Ncutrality with respect to em and color 1nneutral -> singlet,
Amore et al. 2003)

e Weak equilibrium

All these eftects make Fermi momenta of
different fermions unequal causing problems to
the BCS pairing mechanism



Consider 2 fermions with m; = M, m, = 0 at the same
chemical potential p. The Fermi momenta are

pF1=\/H2—M2 . . Pr2 = U

Effective chemical potential for the massive quark
M2

Hest = \/“J2 -M’ ~p———

2

M2

Mismatch: Ol




If electrons are present, weak equilibrium makes
chemical potentials of quarks of different charges
unequal:

d—uev = py;—p, =K,

In general we have the relation: (|1, = [l + QLLQ)

N.B. L, 1s not a free parameter I

10



ov

—=—-0Q=0
O, 2

Neutrality requires:

Example 2SC: normal BCS pairing when

But neutral matter for

|
ny 720, =y 2 20, S W = R~y Rk, =0
d u
Mismatch: 6M:pF_pF:Md_M“:&%b¢O
2 2 2 8




Also color neutrality requires

N 1o & _1 g

Ol Opig

As long as ou 1s small no effects on BCS pairing, but
when increased the BCS pairing is lost and two
possibilities arise:

e The system goes back to the normal phase

e Other phases can be formed



In a stmple model with two fermions at chemical potentials
u+op, u—ou the system becomes normal at the
Chandrasekhar-Clogston point. Another unstable phase exists.

A

A | scs SR _,,f./.{’/ O = ABcs

o O o o
N B O

Normal unstabie phase i
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The point [ou| = A 1s special. In the
presence of a mismatch new features are
present. The spectrum of quasiparticles 1s

E(p) = \m +J(p—1)* + A% For |5u| < A, the gaps
E are A —op and A + op
su—o LOr lou| = A, an unpairing

\ blocking region / _ (blocking) region opens up
N |8H|;A and gapless modes are
fffffffffffffffffffff ) present.

A [ PR
p

T~ E(p):O<:>p:ui\/6u2—A2

gapless modes

begins to unpair

- I |20, > 2A

2A Energy gained in pairing _ 14

28 Energy cost for pairing A




gZSC Same structure of condensates as in 2SC

(Huang & Shovkovy, 2003)

4x3 fermions: <O‘\|I:L\|lf;L O> — A8&[338%
e 2 quarks ungapped q,, Q4

e 4 quarks gapped qy;, Qyg> Qar» e
General strategy (NJL model):

e Write the free energy: V(M, SIERY VPP U I A)

e Solve: OV OV OV
Neutrality O, Op, Oy

5’V_O ﬁ

Gap equation A '




e For |op| > A (op=p./2) 2 gapped quarks become
gapless. The gapless quarks begin to unpair destroying
the BCS solution. But a new stable phase exists, the

gapless 2SC (g2SC) phase.

e It is the unstable phase which becomes stable in this
case (and CFL, see later) when charge neutrality 1s
required.
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e But evaluation of the gluon masses (5 out of 8 become
massive) shows an instability of the g2SC phase. Some of
the gluon masses are i1maginary (Huang and Shovkovy 2004).

e Possible solutions are: gluon condensation, or another
phase takes place as a crystalline phase (see later), or this
phase 1s unstable against possible mixed phases.

e Potential problem also in gCFL (calculation not yet
done).
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Generalization to 3 flavors gCFL

a .. B _ apl a2 ofy3
<0‘\|]aL\|]bL ‘0> =Ae" e, TA e e, tAETE

Different phases are characterized by different values for
the gaps. For instance (but many other possibilities exist)

CFL : A=A, =A,=A
g2SC: A, =0,A, =A,=0
gCFL: A, >A, > A,
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Gaps
n
gCFL

Q0|00 |-1|+1]-1|+1] 0|0
rujgd|bs|rd|gu|rs |buj|gs|bd

ru A5l A,

gd | A, A,

bs | A, | A,

rd —A,

gu —A

rs —A,

bu —A

gs —A,

bd —A,
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Strange quark mass effects:

e Shift of the chemical potential for the strange

quarks: Mg
Has = P
2
e Color and electric neutrality in CFL requires
M2
- — S ) p— p— O
g o By = He
e gs-bd unpairing catalyzes CFL to gCFL
1 M?
Opbpggs = E(Mbd - p’gs) — Mg = o
M2

S

6 — 2 6 rs—bu — e
Mrd—gu Me l‘l’ b “’ 2[1, ’



It follows:

2

~Y>_ Energy cost for pairing ) begins to unpair

v - I

2A Energy gained in pairing

2
M soa
L

Again, by using NJL model (modelled on one-gluon

exchange):

e Write the free energy: V(Mn TR THR T MS : Al)

e Solve:
Neutrality (9_\7 — 5’_V = 8—V =0
Op,  Opy Oy
, oV
Gap equations =0

A,
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unpaired
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e CFL - gCFL 2" order.
transition at M %/ ~ 2A,
when the pairing gs-bd
starts breaking
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Energy Difference [1

e ¢CFL has gapless
quasiparticles. Interesting
transport properties
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1, [MeV]

|-

e gCFL has p, not zero, with charge cancelled by

unpaired u quarks

MZ/1[MeV)
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LOFF nhase

e LOFF (Larkin, Ovchinnikov, Fulde & Ferrel, 1964)2
ferromagnetic alloy with paramagnetic impurities.

e The impurities produce a constant exchange
field acting upon the electron spins giving rise to
an effective difference in the chemical potentials
of the opposite spins producing a mismatch of the

Fermi momenta
25



According to LOFF, close to first order point (CC point),
possible condensation with non zero total momentum

b =k+d p,=-k+§ — (WRW(x))=Ac™"
More generally ——> <\|,(X)\|,(X)> _ Z A c_elin

131 T 1_52 — 261
‘ Ei ‘ fixed variationally

— —_

q / ‘ q ‘ chosen

spontaneously
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Single plane wave:
E(B)—p — E(@Ep+@) —pF o~ J(p—p)’ +A =

L=0n—Vg-q
Also in this case, for  |[p=op—V,. <A

a unpairing (blocking) region opens up and gapless
modes are present

Possibility of a crystalline structure (Larkin &
Ovchinnikov 1964, Bowers & Rajagopal 2002)

(yy(x))=A » ™"

q;=1.28p

The q,’s define the crystal pointing at its vertices.
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The LOFF phase 1s studied via a Ginzburg-Landau
expansion of the grand potential

O +P A YA 4.
27 3

(for regular crystalline structures all the A, are equal)

The coefficients can be determined microscopically for
the different structures (Bowers and Rajagopal (2002))

(L
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# Gap equation

.. O

# Propagator expansion

o -— 000 -—00000 -

# Insert in the gap equation

L OO



We get the equation

AA+BA +YA +---=0
0Q2

Which is the same as — O with

The first coefficient has
OA= o . Q universal structure,
independent on the crystal.

A3 . From 1its analysis one draws
ﬁ _ the following results

YN = ¢ 3 =




Normal
@) 0.|2 {}:4 0.6
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A
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081}
0.6} . .
0a| - Small window. Opens up in QCD?
02} | | \ \L(.)FF (Leibovich, Rajagopal & Shuster 2001;
02 04 08 08 Giannakis, Liu & Ren 2002)
Su, 8_|,L 32
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—[— BCS
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Stm::tum

antipodal pair
triangle
tetrahedron

square
pentagon
trigonal bipyramid
square pyramid
octahedron
trigonal prism
hexagon
pentagonal
bipyramid
capped trigonal
antiprism

square antiprism
hexaganal

bipyramid
augmented

trigonal prism
capped

Sfjuare prism
capped

sfuare antiprism
bicapped

square antiprism
icosahedron
cuboctahedron
dodecahedron
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12
12
20

-l-ﬂTﬁ
-5.727
-10.350
-13.004
-11.613
-22.014
-31.466
-35.018
23,669
-20.158

-05.112

-68.025
-14.208
204.873

-5.206
-527.357

1.687
4.350
-1.538
8.386
13.913
-70.442
19.711
-35.202
6000.225
54.822

5595, EEB
120.259
7771.152
106.362

7318.885

145076.754

07086.514

114166.566

=i 452
-1.655

-5.211
-1.348

—2.8 % 10°°
-3.401
-0.0024
-4 637

—9.1 % 107"

0

—-2.6 % 1077
-0.0019

0.773
1.867
0.755
0.754

0.754
0.772

General
analysis

(Bowers and

Rajagopal (2002))

Preferred
structure:

face-centered

cube 34



Effective gap equation for the LOFF phase
(R.C., M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri & R. Gatto, 2004)

For the single plane wave (P = 1) the pairing region 1s
defined by

A for (p,v,) € PR
elsewhere

A_. = AO(E, )O(E, )_{

By =+@n—v, @)+ +A%, £=p—p




How to obtain this result starting from an effective theory
for fermions close to the Fermi surface? Problem:

£~ Ae™y! Cy,

where in the Fermui fields the large part in the
momentum has been extracted

p=uvy +/¢
Solution: appropriate average procedure over the cell size

2 — Aeff\VTVC\VV
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Average by

. S sin(mar, /R
gR(r):H ( et )
k=1 {Ja s

When R/mt ~ 1 different from zero 1n a region of the
order of the cell size. Condition satisfied if the gap 1s
not too small.
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For P plane waves
P

<\|’(X)\|!(X)> = AZ R

k=1

an analogous average procedure gives pairing regions
and effective gap given by

P = {(pD{;F) [ Ap(p, V) = kA}

P
AL(p,Ve) = ZAeff (P:Ve - dpy)
m=1

38



We obtain the following gap equation

The result can be interpreted as having P quasi-particles
each of one having a gap kA, k=1, ..., P.
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Z

The approximation 1s better far from a second order
transition and 1t 1s exact for P = 1 (original FF case).
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. | a 0
Evaluating the free energy at the Pl | & Yy

. i ; i 54
CC point we see that the P=6 case ; 0.8 E‘Ef _l't‘ﬂ:"‘;}m
. 21 1.0 (075 -0
(octahedron) 1s favored. Then the I
cube takes over at op, ~ 0.95 A sloolo2l  -0.09
28 octahedron
PA, // Fldpa /Ao |Order| =, |A /Ao
0.05 ] , cube 1| 0.754 | II |0.83] 0
N WA / 21 .83 1 1.0 | .51
070809 | 11424314 gl 1929 1 l|oos| 043
! o . 95) 0.
005} ¢ A, | 132 | 1 |0.9]035
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Two phase transitions from the CC point | P |6pus /Ao |Order| 2, |A /Ao
(M %/ =4 A,qc) up to the cube case 1| 0754 | I1 |0.83] O
(M?/p ~ 7.5 Ay). Extrapolating to CFL |2 0.583 I |1.0] 081
(Ayge ~ 30 MeV) one gets that LOFF 6| 1.22 I [0.95] 0.43
should be favored from about 8| 1.32 I 0.9 035

M/ /u ~120 MeV up M */u ~ 225 MeV

=
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ConEmsions

e Under realistic conditions (M, not zero, color
and electric neutrality) new CS phases might exist

e In these phases gapless modes are present. This
result might be important in relation to the
transport properties inside a CSO.
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