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The Standard Model vacuum is based on the simple
concept of Spontaneous Symmetry Breaking (SSB)

induced by a A®* theory. The idea is very simple :
a non vanishing expectation value

<®O>=v #(

of a scalar field @ represents the simplest ingredient to
generate the particle masses (g, are dimensionless
couplings)

m; =g;v
At the quantum level, where the value | § |= v denote the
degenerate absolute minima of the quantum effective
potential V . (¢), SSB amounts to a Bose-condensation
phenomenon of spontaneously created scalar quanta in

the k =0 mode (seet Hooft).

Trying to reconcile this intuitive picture with the

generally accepted “triviality” of A®* theories in 3+1
space-time dimensions leads to a deeper understanding
of the underlying physical system.

Following this way, one discovers the inadequacy of the
standard perturbative approach with sizeable
phenomenological differences.
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Bose condense. The consequence is that this liquid can stream through the tiniest
holes without the least amount of resistance.}

Because separate electrons have spin i, they themselves cannot Bose condense.
Particles whose spin is an integer plus one-half (fermions) must all be in different
quantum states, because of Pauli’s exclusion principle. This is why superconduc-
tivity can only occur if pair formation has taken place. Yes, I realize that this
will raise a few questions, and I apologize beforehand. I have again tried to
translate formulae into words, which implies that the reasonings may sound very
unsatisafactory. Just look at this as a somewhat unwieldy ‘quantum logic’!

That superconductivity could be of importance for elementary particles was
discovered by the Belgian Frangois Englert, the American Robert Brout and the
Scotsman Peter Higgs. They proposed a model for elementary particles in which
electrically charged particles without spin undergo Bose condensation. This time,
bowever, the condensation takes place not inside some material, but in empty
space (the ‘vacuum’) itself. The forces among these particles have then been
chosen in such a special way that it saves energy to fill the vacuum with particles
rather than keeping it empty. These particles are not directly observable. We
would experience this state, in which space and time are sizzling with Higgs
particles (as they are now called), but in which the energy is as low as it can ever
be, as if space-time were completely empty.

The Higgs particles are the quanta of the ‘Higgs field’. A characteristic of the
Higgs field is that the energy in it is lowest when the field has a certain strength,
and not when it is zero. What we experience as empty space is nothing but the

field configuration that has the lowest possible energy. If we move from field
\ Jjargon to particle jargon, this means that empty space is actually filled with Higgs :
| particles. They have ‘Bose condensed’. !
‘This empty space has lots of properties in common with the interior of a
superconductor. The electromagnetic field here also has a short range. This is
directly related to the fact that in such a world the photon has a certain amount
of rest mass.

And yet we have a complete gauge symmetry; gauge invariance is not violated
anywhere. And thus we have learned how to turn a photon into a ‘massive’
particle without violating ganee invariance. All we had to do was tn add theee
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CONDENSATES AND EXCITATIONS
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Figure 2.9 Drag on a negative ion moving through liquid He 11 at 0.35 K and 25 atm,
as a function of the average ionic drift velocity {vp ). Drag sets in when {vp ) reaches
critical value which is close to roton v . In contrast, drag on ion in liquid He I at 40 K
sets in as soon as it starts to move, showing that superfluidity is absent, (After Allum et

al 1977.)

with those calculated from currently accepted values of the Landau parameters
(see §2.5) to within about 1 %, If those parameters were to be measured directly
by neutron scattering in this region of the He II phase diagram, even more

valuable comparisons could then be made.

As we shall describe in the next chapter, many superflow experiments
involve the flow of He 1I through channels and past obstacles. Usually it is
found that there is a non-dissipative flow up to a critical value of superfluid
velocity, above which dissipation sets in, a situation for which figure 2.8 could
he need ac an illustration. It might then seem feasible to use the same argument



For instance, introducing the “physical” definition of
the vacuum expectation value v (in the Standard

Model vy ~246 GeV) and the Higgs boson mass M,
perturbation theory predicts

A being the ultraviolet cutoff. Thus, if one would
measure a value M= 750 GeV, the cutoff A is

predicted to be below 2 TeV thus implying the existence
of “new physics” at that energy scale.

Instead, one finds evidence for the alternative result

M..2
Hz = A- independent
Vr

This has been discussed in a series of papers (M.C. and
P.M.Stevenson 1994-2000) after some early attempts (V.
Branchina, P.Castorina, M.C. , D. Zappala’ 1990-1992).

As phenomenological consequences are substantial, a
(successful) check of the picture with lattice simulations
has been performed (P.Cea, M.C., L.Cosmai 1998-2004).




The meaning of “triviality”

What does “triviality” exactly mean ? It is a statement
dictating zero scattering in the continuum limit of 3+1
dimensional QFT (random walks in 3 space dimensions
have zero probability of intersecting).

The standard perturbative interpretation of this result
is the following : without an ultraviolet cutoff A there
would be no scalar self-interactions and without them
no symmetry breaking. Therefore, the theory must have
an ultraviolet cutoff whose magnitude is set by the (one-
loop) renormalized self coupling
T 5

In A

Finally, using the perturbative relation

one obtains the previously quoted result.

This perturbative interpretation of the theory can be
seriously questioned. In fact, the perturbative [3-

function of L®* has an alternating-sign structure and
predicts either Landau poles (odd orders) or spurious
ultraviolet fixed points (even orders). In the latter case,

there would be no reasons for a vanishing A .



An alternative interpretation of “triviality” is obtained
starting from the remark that, as known from solid
state physics, a vanishingly small two-body coupling can
coexist with a non trivial ground state.

Example:

Hard-Sphere Bose Gas (Lee, Huang, Yang 1957)

Consider a system of

N atoms in a volume V
with mass m and scattering length a

with number density

N
n=—
\%

Assume

na’<<1 diluteness

ka<<1 low-energy



Low-lying excitations are phonons

atoms (a*(k),a(k)) = (b*(k),b(k)) phonons

Bogolubov transform

W= N2 s K BT i6ma BAED)
m k=021

Consider the case where the phonon spectrum becomes
“exact”. Since phonon-phonon interaction processes
become important at higher momenta, one can take the
limit

a—>0

(so that the condition ka<<1 is valid at any finite
momentum) in such that the product na= fixed. In this
case, one generates a hierarchy of systems with the same
sound velocity

2 4mna

s
mz

C

but smaller and smaller phonon-phonon interactions.



This type of system is “trivial” (in a technical sense) but
not entirely trivial (in the physical sense). Namely, the
excitations are free-field like but are not the non-

interacting atoms with spectrum k?/(2m) as if the limit
were taken at a fixed density n=constant.

Notice that the density n ~1/a diverges when a — 0.
However, the system becomes infinitely dilute since, for
na=constant, the limit a — 0 gives

c=na’ =0

Therefore, the average spacing among the atoms

1 .
d ~ -— vanishes in physical units but it diverges in

in
units of the scattering length. In this sense, the
“triviality” condition establishes a hierarchy of length
scales that decouple in the limit a — 0 being connected

by inverse powers of €



In QFT the non-zero density of scalar quanta originates
from the spontaneous decay of the empty vacuum state

‘0> of perturbation theory.

The second-quantized Hamiltonian is

H=%: 1’ + (Vo) +m* ®* : + % JOM

where normal ordering is defined with respect to ‘0)
and the field operator is

d(x) = (a(k)e““‘ + a*(k)e‘“‘")

1 S 1
JV < 2E(k)

with a(k)|0)=0 and E(k)="k> +m”.

The operators a(k) and a* (k) annihilate and create

the elementary scalar quanta (with mass m) of the field
d(x) , the “phions”.




The possibility of SSB (and Bose condensation) can be
explored by considering the simple class of states

)= e [0)
for which
1
= (D) = p)
¢ < >"" 2Vm ¢
and
%lf(k)a(k) X
n._— =
vV ()
(7}
so that
= -1-m¢2
5

Therefore, one can interchange n < ¢ and SSB, as the
condition for non trivial absolute minima of the effective
potential V . (¢), becomes equivalent to Bose

condensation.



The possibility of SSB (and Bose condensation) can be
explored by considering the simple class of states

w)=e"™ |0)
for which
1
= (D) = 2
¢ < >“" 2Vm ¥
and
>.a" (k)a(k) ;
n= k -
% ()
Wy
so that
n= 1md:t2
2

Therefore, one can interchange n < ¢ and SSB, as the

condition for non trivial absolute minima of the effective

potential V . (¢), becomes equivalent to Bose
condensation.




An obvious question immediately arises: how can a

AD* theory with both a repulsive contact interaction
(A > 0) and physical mass (m > 0) exhibit a condensed

vacuum ?

Namely, in these conditions, how can a system with an
average number N of quanta have lower energy than the

trivial empty vacuum state ‘0) :

Consider the case where all quanta sit in the k=0 state.
There are :

i) the positive contribution from the rest mass

Nm
ii) the positive repulsive hard-sphere repulsion

21tna A
where a=

m Stm

N



The point is that the interparticle potential is not always
repulsive. The t- and u-channel one-loop contributions

provide an ultraviolet-finite part that gives rise to an
attractive ~ - 1/r° potential.

In our case, the interparticle potential (see Feinberg,
Sucher, Au 1989) can be derived by considering the
elastic collision of two scalar particles in the c.m. frame.
The scattering matrix element M (q) depends on the 3-
momentum transfer q and, parametrically, on the c.m.
energy E. One gets

d3q —igr
lIip;(r)= I(Z‘J‘[)3 3o IM(q)I




Thus, in the tree approximation one gets

A
IM[EA = Uip(l’)=:l;n—25(r)

At one loop and for zero-momentum particles (E=m)

A2 F(Qmr)
= 3o 2 3
256t m r
with
1 (for m— 0)

FCZmr)=2mr K,2mr) —
Jrmr e *™ (for r— )

A qualitative estimate of the energy density for a dilute
system (only two-body contributions) for an N-particle
system can be obtained from the average interaction

U=_ [U, (r)d’r

.
v

. 2o = N =
using the estimate EN(N -1) U = S | 3



U;plr)
I:\ hard sphere

For an interaction of the type

one gets an energy density

An’ A’n? e dr
B sm ¢ o - —ESES
8m 64n°m” , r
rest mass short-range long-range
repulsion attraction

' ax = Fmax (M) = the interaction gets
screened since the propagation takes place in a

background
XX = XX

and transforms n—i m¢ , one reproduces the well

If onesets r

known structure of the one-loop effective potential

Aot Ad’
2567 2A2

Va@®= Smie? + o'

(r, =1/A)




The phase transition associated with SSB is “weakly
first order”, namely, it occurs for a positive value

m =m_ > 0. However, approaching the continuum limit
m_ vanishes in units of the physical scale of the broken
phase.

This can easily be checked computing the effective
potential for m=0 (the “Coleman-Weinberg regime”)
and checking that there is a non-trivial minimum for

0=0.

. i 2% k¢ 1
Vl loop i e 18 In e
el 25677 2N 2
classical zero-point energy of a field
energy with mass M2 (¢) = (A$*/2)

This exhibits non-trivial absolute minima ¢ = +v for

2
Mz(v) o A’% - Aze—32‘f-£2 I(3%) s le-l

or
167>

g =
3In(A/My)




The one-loop structure can be given a non-perturbative
meaning. Indeed, it reproduces itself in those
approximations where the shifted fluctuation field is
governed by a quadratic Hamiltonian (one-loop,
Gaussian, post-gaussian). These approximations exhibit
the following simultaneous replacements

¢ \ 1 \\‘# _4

Therefore, the “triviality-compatible” approximations
to the effective potential, namely

1-loop gauss post—gauss { _ y7triv
Ik o Syt g Ly

display the same structure

A0)
4!

V@)= 500+ K M)



~ A
with M?(¢) = ?pz

Therefore, in leading order, one finds the same type of
structure

A= ~ ~
In(A/My) \%
where
My = M(¢=v)

The “triviality-compatible” approximations exhibit a
characteristic feature : a large logarithmic rescaling of
the bare vacuum field. To this end, let us introduce the

“physical” normalization of ¢, say ¢ . This is defined
from the condition

d*V

= M?
do’r =

bp=Vg



Therefore, if we set

"R L
Z¢'
we obtain
2
2 niln
M H MH

In terms of ¢y, the (“trivial”) effective potential has the
approximation-independent form

triv 2,4 ¢2R 1
V™T(¢r)=1"9 “(l“—z"i
VR
and one finds

2 2
M2y =87t vir

in all approximations (one-loop, gaussian, post-
gaussian).




Outside of the Coleman-Weinberg regime, one finds the
more general expressions (0 <g<2)

Vtriv (¢R) - ZTEZQ(Q —_ 1)¢2R (VZR i ¢2R) +

2
2 2,4 ¢R'1
T In———
G ¢ r( i

and

M?g = 8n’cvir

that reduce to the previous ones for ¢ =1.
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The rescaling of the vacuum field, Z = Z¢, as defined

above by matching the quadratic shape of the effective
potential with the physical Higgs boson mass, should not
be confused with the more conventional quantity, say
LZ=17,,,, as defined by the residue of the shifted field

propagator.

L =12,,, can be related, through the Kallen-Lehmann

representation to the normalization of the one-particle
states. This representation can only exist for a field that

admits an asymptotic Fock representation (as in QED).

In this case, one defines @ (x,t) = <(I)> + h(x,t) so that

(@(x,t)@(0,0)) = (h(x,t)h(0,0)) = C(x,t)

conn.

Taking the Fourier transform, one finds

Clk,t)=3| A, e

where E_ (k) are the o -particle energy eigenvalues for
a given 3-momentum k .




In this framework

AT
= A

—

In the presence of SSB, the Fock representation exists
only for the shifted fluctuation field (that has a
vanishing expectation value) and is defined “after’
fixing the vacuum state. For this reason, beyond
perturbation theory, the field rescaling cannot be given
as an overall “operatorial” condition of the type

D, =VID,.



Physical interpretation of Z .

2
M’y = % = 8n(na)

The “triviality” of the theory implies a continuum limit
where the scattering length a — 0. As in the non-
relativistic example of the hard-sphere Bose gas, the

mass scale

2 2
Ma~VR

can remain fixed only if the particle density n — oo in
such a way that the product (na) remains fixed.

In the conventional perturbative picture, where vacuum
field and fluctuations undergo the same unit rescaling,
one identifies bare and physical vacuum fields so that

2
‘Vz s (1"F R)pert

MZH ~ ~
InA InA

Thus if v’ ~ (v’r )pere 18 identified with the physical
scale (say 246 GeV in the Standard Model) one
predicts My; — 0 when A — co. In particle language,

this means to take the limit a — 0 for n=constant.
Therefore, the behaviour Z, ~In A, that provides a

finite M in the continuum limit, is equivalent to a
denser and denser scalar condensate.



Check of the picture with lattice simulations.

Define the theory on the lattice in terms of a lattice field

<¢'Iatt> Ny

(B="Bare”) at a locality level A = t/a. Compute

’Vy@p) _Ma_ 1
d¢’s Z, %,(0)

Pp=Vg

where 7, (0) indicates the bare zero-momentum
susceptibility. A lattice simulations where one compares
the scaling properties of M and 7, (0) can easily

resolve the issue. If perturbation theory is right,
assuming a unique trivial rescaling for vacuum field and
fluctuations, a lattice calculation of

Z,= lea"xlatt

should unambiguously approach unity in the continuum
limit.




First method

Compute the propagator on the lattice and compare the
lattice data to the (lattice version of the) two-parameter

form

Ly
G(P)=—5——;
P +IN jatt

Then compute y,,, and compare Z _ with

Z, = mzmuxim. Perturbation theory predicts
1, ~Z,,,, while the alternative interpretation of

“triviality” predicts Z,  ~1and Z;, ~InA.

Check these predictions with lattice data taken in the 4D
Ising limit of AD* theory.
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Second method

Again in the Ising limit, for any value of the hopping
parameter K in the broken phase, take the lattice mass
from perturbation theory as an external input

mpert (K) 5] minput (K)

and just compute the lattice zero-momentum
susceptibility 7, (K). Using the central values

reported in the Luescher-Weisz tables, one can check
the consistency of the perturbative trend and compare
at each K the quantity

Z,= 21cm %input Kiatt
with the perturbative estimate

Ly =2xZy

where Z, is also given in the Luescher-Weisz tables.
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Third method

With the first two methods one has to determine the
value of the physical Higgs mass mg(x) at each given

value of the hopping parameter K in the broken-
symmetry phase. There is a third method, however,
where this is not needed and one can get a precise lattice
test just using the zero-momentum susceptibility and the
bare vacuum field.

To this end, let us observe that both in perturbation
theory and in the alternative picture of “triviality”, one

predicts
v’B

2
m Rr

~In(A/mg)

Therefore in perturbation theory, where one predicts
%,(0)m’r ~1, one expects (PT=Perturbation-Theory)

[Viex, ()], ~In(A/my)

On the other hand, in the alternative picture, where one
predicts y,(0)m’r ~ In(A/mg) one would rather
expect (CS=Consoli-Stevenson)

[Vex, (0] ~In?(A/my)




These two predictions can be compared with the lattice
data for the product vzgxlm . The data can be fitted to
the three-parameter form

aln|k—xk,|I
where o is a normalization constant and one has to set

Perturbation-Theory

-2
[
[—y

¥=12 Consoli-Stevenson

As one can check, the lattice data prefer unambiguously
the fit with y = 2. In this case, one obtains a very precise

determinations of the critical point x_, = 0.074819(11)
to compare with the value x_ = 0.074834(15) obtained
from the symmetric phase (Gaunt et al. 1979).
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Conclusions

1) In QFT, SSB is described as a condensation
phenomenon. This result is naturally recovered in
the class of “triviality-compatible” approximations
to the effective potential, V , =V, . where the

phase transition is (weakly) first-order.

2) The structure of V. is such that one needs a
logarithmically divergent rescaling Z, ~ In A ,from

the bare vacuum field vy to the physical vacuum
field v, in order the quadratic shape of V., to
match the physical Higgs boson mass M ;.

3) As a consequence, M ; and v scale uniformly
with A, differently from the perturbative
predictions, and the ultraviolet cutoff becomes
invisible to low-energy physics.

4)The large logarithmic rescaling Z, admits a

physical interpretation in terms of a denser and
denser condensate that compensates for the
vanishingly small strength of the two-body
coupling in the continuum limit (“triviality”).

5)This type of picture is supported by the results of
lattice simulations performed in the 4D Ising limit

of A®* theory.




