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The QCD Phase Diagram

µ

T(MeV)

(MeV)

T

GSI ?
quark
matter?

quark−gluon plasma

nuclear
matter

c

µ

100

200

500 1500

color
superconductor

hadronic fluid

RHIC
/A

LIC
E

compact stars

critical endpoint

crossover
(µ Ε ,Τ )Ε

onset

crystalline

. – p.2/31



Equation of State at µB = 0 (Lt = 4)
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• For Nf = 2 transition is crossover

• For Nf = 3 and m < mc transition is first order

• For realistic “Nf = 2 + 1” a crossover is favoured, but
more work needed
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The Sign Problem for µ 6= 0

In Euclidean metric the QCD Lagrangian reads

LQCD = ψ̄(M +m)ψ +
1

4
FµνFµν

with M(µ) = D/ [A] + µγ0

Straightforward to show γ5M(µ)γ5 ≡M †(−µ) ⇒
detM(µ) = (detM(−µ))∗

ie. Path integral measure is not positive definite for µ 6= 0
Fundamental reason is explicit breaking of time reversal symmetry

Monte Carlo importance sampling, the mainstay of lattice
QCD, is ineffective
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A formal solution to the Sign Problem is reweighting ie. to
include the phase of the determinant in the observable:

〈O〉 ≡ 〈〈O arg(detM)〉〉
〈〈arg(detM)〉〉

with 〈〈. . .〉〉 defined with a positive measure |detM |e−Sboson

Unfortunately both denominator and numerator are
exponentially suppressed:

〈〈arg(detM)〉〉 =
Ztrue

Zfake
= exp(−∆F ) ∼ exp(−#V )

Expect signal to be overwhelmed by noise in
thermodynamic limit V → ∞
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Two Routes into the Plane
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µ

Reweighting in    ,   (T)µ

in    /T

β

(I) Analytic continuation in
µ/T by either
Taylor expansion @ µ = 0

Gavai & Gupta; QCDTARO

Simulation with imaginary
µ̃ = iµ de Forcrand & Philipsen;

d’Elia & Lombardo

Effective for µ
T
< min

(

µE

TE

, π
3

)

(II) Reweighting along transition line Tc(µ) Fodor & Katz

Overlap between (µ, T ) and (µ+ ∆µ, T + ∆T ) remains
large, so multi-parameter reweighting unusually effective
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The Bielefeld/Swansea group uses a hybrid approach; ie. we reweight
using a Taylor expansion of the weight:

Allton et al , PRD66(2002)074507

ln

(

detM(µ)

detM(0)

)

=
∑

n

µn

n!

∂n ln detM

∂µn

∣

∣

∣

∣

µ=0

This is relatively cheap and enables the use of large spatial volumes
(163 × 4 using Nf = 2 flavors of p4-improved staggered fermion).
Note with Lt = 4 the lattice is coarse: a−1(Tc) ' 700MeV
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The (Pseudo)-Critical Line
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Remarkable consensus on the curvature. . .

RHIC collisions operate in region µB ∼ 45MeV
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Growth of Baryonic Fluctuations
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Allton et al PRD68(2003)014507Near µq/T ∼ 1

Quark number susceptibility χq = ∂2 ln Z
∂µ2

q
is singular,

in contrast to isospin susceptibility χI = ∂2 ln Z
∂µ2

I

Massless field at critical point a combination of the
Galilean scalars ψ̄ψ and ψ̄γ0ψ?
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The Critical Endpoint µE/TE

Reweighting estimate
via Lee-Yang zeroes
µE/TE = 2.2(2)

Z. Fodor & S.D. Katz JHEP0404(2004)050

Taylor expansion estimate
from apparent radius of
convergence
µE/TE

>∼ |c4/c6| ∼ 3.3(6)
Allton et al PRD68(2003)014507
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Analytic estimate via Binder cumulant 〈(δO)4〉/〈(δO)2〉2
evaluated at imaginary µ ⇒ µE/TE ∼ O(20)!

P. de Forcrand & O. Philipsen NPB673(2003)170
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Partial Summary
Approaches with different systematics are yielding
encouraging agreement on the critical line Tc(µ)

for small µ/T
Still no consensus on location of the critical endpoint
Need better control over statistics, and over sensitivity to
strange quark mass ms

even at µ = 0, estimates of critical quark mass with Nf = 3 show
strong cutoff-dependence: eg.

mcrit
π =

{

290(20)MeV standard action

70(20)MeV p4 improved

We need to get closer to the continuum limit!

NO OBVIOUS OBSTACLE to calculation of µE/TE
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The QCD Phase Diagram
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χSB vs. Cooper Pairing
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Color Superconductivity

In the asymptotic limit µ→ ∞, g(µ) → 0, the ground state
of QCD is the color-flavor locked (CFL) state characterised
by a BCS instability, [D. Bailin and A. Love, Phys.Rep. 107(1984)325]

ie. diquark pairs at the Fermi surface condense via

〈qα
i (p)Cγ5q

β
j (−p)〉 ∼ εAαβεAij × const.

breaking SU(3)c⊗SU(3)L⊗SU(3)R ⊗U(1)B ⊗U(1)Q
−→SU(3)∆⊗U(1)Q̃

The ground state is simultaneously
superconducting (8 gapped gluons, ie. get mass O(∆)),
superfluid (1 Goldstone),
and transparent (all quasiparticles with Q̃ 6= 0 gapped).

[M.G. Alford, K. Rajagopal and F. Wilczek, Nucl.Phys.B537(1999)443]
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At smaller densities such that µ/3 ∼ kF
<∼ ms, expect

pairing between u and d only ⇒ “2SC” phase

〈qα
i (p)Cγ5q

β
j (−p)〉 ∼ εαβ3εij × const.

SU(3)c −→ SU(2)c ⇒ 5/8 gluons get gapped
Global SU(2)L⊗SU(2)R⊗U(1)B unbroken

Another possibility in isopsin asymmetric matter is the
so-called “LOFF” phase:

〈u(ku
F ; ↑)d(−kd

F ; ↓)〉 6= 0

In the electrically-neutral matter expected in compact stars,
kd

F − ku
F = µe ∼ 100MeV ⇒ 〈ψψ〉 condensate has ~k 6= 0

breaking translational invariance ⇒ crystallisation
Other ideas:
a 2SC/normal mixed phase (plates? rods?)

or a gapless 2SC where 〈qq〉 6= 0 but ∆ = 0
. – p.15/31



What can we say at smaller densites µ ∼ O(1 GeV) where
weak coupling methods can’t be trusted? Lattice QCD
simulations can’t help due to the Sign Problem

In many body theory there are two tractable limits:

Strong Coupling Weak Coupling

physical d.o.f.’s tightly-bound bosons weakly interacting fermions

superfluidity
mechanism Bose Einstein Condensation BCS condensation

QFT example Two Color QCD NJL model

Both model QFT’s can be studied with µ 6= 0 using lattice
simulations which evade the Sign Problem.

High-Tc superconducting compounds, cold atoms near a
Feshbach resonance, and perhaps QCD, are difficult
problems because they belong to neither limit
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Gross-Neveu model. . .

L =

Nf
∑

i=1

ψ̄i(∂/ +m+ µγ0)ψi −
g2

2Nf

(ψ̄iψi)
2,

. . . just about the simplest QFT with fermions.
The fundamental interaction is attractive
Can also write in terms of an auxiliary scalar σ:

L = ψ̄i(∂/ +m+ µγ0 +
g√
Nf

σ)ψi +
1

2
σ2.

For g2 > g2
c ∼ O(Λ−1) and µ = 0 the ground state has a

dynamically-generated fermion mass Σ0 = g√
Nf

〈σ〉 6= 0

given in the Nf → ∞ limit by the chiral Gap Equation

Σ0 = g2tr
∫

p

1

ip/ + Σ0
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In same limit σ acquires non-trivial dynamics:

D−1
σ (k2) = 1 − Π(k2) ∝

{ k2 + 4Σ2
0 k � Σ0

kd−2 k � Σ0

⇒ For 2 < d < 4 model is unexpectedly renormalisable

ie. GN model has an UV-stable renormalisation group fixed
point and an interacting continuum limit as g → gc.

Wilson (1974)

In 2+1d GN can be regarded as a fundamental QFT
but without gluons or confinement

In 3+1d this property ceases to hold, and the GN model
(like NJL) must be regarded as an effective field theory
requiring an explicit UV cutoff.
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GN Thermodynamics
The large-Nf approach can also to be applied to T, µ 6= 0
and predicts a chiral symmetry restoring phase transition:

Tc|µ=0 =
Σ0

2 ln 2
; µc|T=0 = Σ0

Lattice simulations can model Nf <∞ even for µ 6= 0
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There is even evidence for a tricritical point at small T
µ

!
[J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

. – p.19/31



Fermion Dispersion relation
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0.3 0.291(1) 1.018(1) 0.952(4)

0.4 0.389(1) 0.999(1) 0.973(1)

0.5 0.485(1) 0.980(1) 0.990(2)

0.6 0.584(3) 0.973(1) 1.001(2)

The fermion dispersion relation is fitted with

E(|~k|) = −E0 +D sinh−1(sin |~k|)

yielding the Fermi liquid parameters

KF =
E0

D
; βF = D

coshE0

coshKF
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A massless vector excitation?
SJH & C.G. Strouthos PRD70(2004)056006
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Sounds Unfamiliar?
Light vector states in medium are of of great interest:

Brown-Rho scaling, vector condensation. . .
In the Fermi liquid framework a possible explanation is a
collective excitation thought to become important as
T → 0: Zero Sound

Ordinary FIRST sound is a breathing mode
of the Fermi surface: velocity β1 ' 1√

2
kF

µ

ZERO sound is a propagating distortion
of the Fermi surface: velocity β0 ∼ βF must be determined
self-consistently
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The NJL Model

Effective description of soft pions interacting with nucleons

LNJL = ψ̄(∂/ +m+ µγ0)ψ − g2

2
[(ψ̄ψ)2 − (ψ̄γ5~τψ)2]

∼ ψ̄(∂/ +m+ µγ0 + σ + iγ5~π.~τ)ψ +
2

g2
(σ2 + ~π.~π)

Introduce isopsin indices so full global symmetry is
SU(2)L⊗SU(2)R⊗U(1)B

Dynamical χSB for g2 > g2
c ⇒ isotriplet Goldstone ~π

Scalar isoscalar diquark ψtrCγ5 ⊗ τ2 ⊗Acolorψ breaks U(1)B

⇒ diquark condensation signals high density ground state
is superfluid
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Model is renormalisable in 2+1d so GN analysis holds

In 3+1d, an explicit cutoff is required. We follow the
large-Nf (Hartree) approach of Klevansky (1992) and
match lattice parameters to low energy phenomenology:

Phenomenological Lattice Parameters
Observables fitted extracted
Σ0 = 400MeV ma = 0.006

fπ = 93MeV 1/g2 = 0.495

mπ = 138MeV a−1 = 720MeV

The lattice regularisation preserves
SU(2)L⊗SU(2)R⊗U(1)B
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Equation of State and Diquark Condensation
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Equation of State and Diquark Condensation
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Add source j[ψtrψ + ψ̄ψ̄tr]

Diquark condensate esti-
mated by taking j → 0

Our fits exclude j ≤ 0.2
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The Superfluid Gap

Quasiparticle
propagator:

〈ψu(0)ψ̄u(t)〉 = Ae−Et +Be−E(Lt−t)

〈ψu(0)ψd(t)〉 = C(e−Et − e−E(Lt−t))

Results from 96 × 122 × Lt, µa = 0.8 extrapolated to
Lt → ∞ (ie. T → 0) then j → 0
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The gap at the Fermi surface signals superfluidity
SJH & D.N. Walters PLB548(2002)196 PRD69(2004)076011
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• Near transition, ∆ ∼ const, 〈ψψ〉 ∼ ∆µ2

• ∆/Σ0 ' 0.15 ⇒ ∆ ' 60MeV
in agreement with self-consistent approaches

• ∆/Tc = 1.764 (BCS) ⇒ Ltc ∼ 35
explains why j → 0 limit is problematic

• Currently studying µI = (µu − µd) 6= 0,
which “re”introduces a sign problem!
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NJL Model in 2+1d
SJH, B. Lucini & S.E. Morrison PRL86(2001)753 PRD65(2002)036004
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No gap at Fermi surface

High density phase µ > µc is critical, rather like the low-T
phase of the 2d XY model Kosterlitz & Thouless (1973)
δ =δ(µ) ' 3 – 5 Cf. 2d XY model δ ≥ 15
New universality class due to massless fermions
No long-range ordering, but phase coherence

〈ψψ(0)ψψ(r)〉 ∝ r−η(µ) ⇒ Thin Film Superfluidity
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Persistent Flow in a 2d Superfluid
If θ(x) is the local phase of the condensate, then the
supercurrent ~Js = Υ~∇θ

Lx

Ly
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Persistent Flow in a 2d Superfluid
If θ(x) is the local phase of the condensate, then the
supercurrent ~Js = Υ~∇θ

Lx

Ly

Vortex transport ‖ x̂ induces a current density Jsy = 2πΥ
Ly

Energy required to change ~Js ∼ lnLx
. – p.29/31



To test this scenario, with A. Sehra we are currently
running simulations with a “twisted” source j(x) = j0e

iθ(x)

with θ a periodic function of x.
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Expect ~Js = 〈ψ̄~γψ〉 = 2π
L

Υ as j0 → 0

Initial results suggest helicity modulus Υ shows strong first-

order transition as µ is increased
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Summary
Without a sign problem to worry about, simulations with
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Summary
Without a sign problem to worry about, simulations with
µ 6= 0 are in many respects easier than those with T > 0!

Evidence for superfluidity in 3+1d

Evidence for thin film superfluidity and new universality
class in 2+1d

For the future:
is there a model with long-range interactions which
interpolates between BEC and BCS?
what is the physical origin of the sign problem?
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