Deconfinement in QCD and in Nuclear Collisions

Helmut Satz

Universität Bielefeld, Germany and Instituto Superior Técnico, Lisboa, Portugal

- 1. States of Matter in QCD
- 2. High Energy Nuclear Collisions
 - 3. Experimental Signatures

1. States of Matter in QCD

What happens to strongly interacting matter in the limit of high temperature and/or density?

- hadrons have intrinsic size $r_h \simeq 1$ fm hadron needs $V_h \simeq (4\pi/3)r_h^3$ to exist
 - $\Rightarrow \underline{\text{limiting density}} \text{ of hadronic matter}$ $n_c = 1/V_h \simeq 1.5 \ n_0 \qquad \qquad \text{[Pomeranchuk 1951]}$
- hadronic resonance dynamics \rightarrow exponential growth of hadron species

$$\rho(m) \sim \exp(bm)$$

- statistical bootstrap model

[Hagedorn 1968]

- dual resonance model

[Fubini & Veneziano 1969; Bardakçi & Mandelstam 1969]

- \Rightarrow <u>limiting temperature</u> of hadronic matter $T_c = 1/b \simeq 150 - 200$ MeV
- what happens beyond n_c, T_c ?

QCD: hadrons are dimensionful color-neutral bound states of pointlike coloured quarks and gluons

hadronic matter: colourless constituents

quark-gluon plasma: coloured constituents

 $deconfinement \sim insulator\text{-}conductor\ transition$

- effective quark mass shift at T=0, quarks 'dress' with gluons $m_q \to M_q \Rightarrow \text{constituent quarks}$ in hot medium, dressing 'melts' $M_q \to 0$ for $m_q=0$, \mathcal{L}_{QCD} has chiral symmetry $M_q \neq 0$: spontaneous chiral symmetry breaking $M_q \to 0 \Rightarrow \text{chiral symmetry restoration}$
- diquark matter
 deconfined quarks ~ attractive interaction
 → coloured bosonic 'diquark' pairs
 (Cooper pairs of QCD)
 ⇒ diquark condensate ~ colour superconductor
 thermal agitation can break diquark binding:
 transition superconductor → conductor
- expected phase diagram of QCD:

baryochemical potential $\mu \sim$ baryon density.

• statistical QCD:

given QCD as dynamics dynamics input, calculate resulting thermodynamics, based on QCD partition function $Z_{QCD}(T, V)$

Ab initio calculation:

- ⇒ finite temperature/finite density lattice QCD
- order parameters
 - deconfinement

Polyakov loop $L \sim \exp\{-V_{Q\bar{Q}}/T\}$

 $V_{Q\bar{Q}}$: potential energy of $Q\bar{Q}$ pair for $r\to\infty$

 \Rightarrow L=0 : confinement

 $L\neq 0$: deconfinement

- ightarrow deconfinement temperature T_L
- chiral symmetry restoration

chiral condensate $\chi \equiv \langle \bar{\psi}\psi \rangle \sim M_q$

measures 'constituent' quark mass

 $\Rightarrow \chi \neq 0$: chiral symmetry broken

 $\chi = 0$: chiral symmetry restored

- ightarrow chiral symmetry restoration temperature T_{χ}
- how are T_L and T_{χ} related?

lattice results

Polyakov loop

chiral condensate

conclude:

deconfinement and chiral symmetry restoration coincide, determine critical temperature T_c

$$N_f = 2, 2 + 1 : T_c \simeq 175 \text{ MeV}$$

in chiral limit $(m_q \to 0)$.

• energy density

ideal gas of massless pions

$$\epsilon_h = 3 \frac{\pi^2}{30} T^4 \simeq T^4$$

ideal gas of massless quarks $(N_f=2)$ and gluons

$$\epsilon_{QGP} = 37 \; \frac{\pi^2}{30} \; T^4 \simeq 12 \; T^4$$

deconfinement ⇒ sudden increase in energy density: "latent heat of deconfinement"

lattice results

with

$$N_f = 2, 2+1 : \epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3$$

for deconfinement energy density.

ullet interaction range (from string breaking) drops sharply as $T \to T_c$

from $r \simeq 1.5$ fm to $r \simeq 0.3$ fm

 \Rightarrow colour screening

• consequence: charmonium suppression

 J/ψ survives until 1.5–2.0 T_c χ_c suppressed essentially at T_c NB: equilibrium QCD thermodynamics

• nature of transition depends on N_f and m_q : continuous, first order, cross-over (percolation)

• non-zero net baryon density $(\mu \neq 0, N_b > N_{\bar{b}})$,

computer algorithms break down, power series...

conjecture for
$$\mu \neq 0$$
, $N_f = 2 + 1$

critical point in $T-\mu$ plane depends on position of physical point in $m_s-m_{u,d}$ plane

preliminary results $(m_q, \text{ power series}, ...)$

net baryon density fluctuations increase with μ , \rightarrow approach to critical point $\mu_c \simeq 0.3-0.7~{\rm GeV}$

• conclude:

in QCD, \exists critical temperature T_c

at which

- deconfinement sets in
- chiral symmetry is restored
- latent heat of deconfinement increases energy density
- colour screening reduces interaction range

Can all this be tested in the laboratory?

2. High Energy Nuclear Collisions

High energy A-A collisions produce many nucleonnucleon collisions in same space time region

Canonical view of high enery heavy ion collision

Assume:

multiple parton interactions \rightarrow <u>thermalization</u>, hot thermal medium: <u>quark-gluon plasma</u>, thermal deconfinement/confinement <u>transition</u>, emission of hadrons

conditions for thermalization?

prerequisite:

∃ communication ('cross talk', 'colour connection') between partons from different nucleon interactions

counterexample: hadron production at LEP

consider hadron multiplicity from jet decay of W's

- cross talk:

$$\Rightarrow N_h(a) < 2N_h(b)$$

- no cross talk:

$$\Rightarrow N_h(a) = 2N_h(b) \iff 3 \text{ LEP expts.}$$

same space-time region, but no cross talk

- ⇒ pre-equilibrium <u>initial state</u> conditions crucial for <u>final state</u> of high energy nuclear collisions
- \Rightarrow parton percolation, colour glass condensate

Consider partons in nuclear collisions:

Lorentz-contracted nuclei (A-A)

superposition of partons: parton density in transverse plane increases with $A,\ \sqrt{s}$

with increasing density:

partons overlap \rightarrow clusters in transverse plane; within a cluster, partons communicate

- how does cluster size grow with parton density?
- when does partonic cluster size \sim system size (\rightarrow parton network, global cross-talk)?
 - \Rightarrow Short Interlude: Percolation Theory \Leftarrow

 $\textbf{Percolation} \sim \textbf{formation of infinite cluster}, \textbf{network}$

example: 2-d disk percolation (lilies on a pond)

distribute small disks of area $a = \pi r^2$ randomly on large area $F = L^2$, $L \gg r$, with overlap allowed

for N disks, disk density n = N/F average cluster size S(n) increases with increasing density n

 \exists critical density: for

$$n \rightarrow n_c = 1.13/a$$

S(n) spans area $F: S \sim F$

for $N \to \infty, F \to \infty$:

 $S(n_c)$ and $(dS(n)/dn)_{n=n_c}$

diverge: \Rightarrow percolation

probability P(n) that given disk in infinite cluster

$$P(n) \begin{cases} = 0 & \forall n < n_c \\ \sim (n - n_c)^{\beta} & \text{for } n \to n_c \text{ from above} \end{cases}$$

 \Rightarrow order parameter for percolation

average cluster size diverges

$$\tilde{S}(n) \simeq |n - n_c|^{-\gamma}$$

so do other observables: singular behaviour as function of density n

⇒ critical exponents, universality classes

Why is there singular behaviour?

 \Rightarrow spontaneous global connection

connected or disconnected, not "gradual"

\Rightarrow Geometric Critical Behaviour \Leftarrow

- onset of infinite cluster/network formation
- singular behaviour of geometric observables
- Thermodynamic critical behaviour: spontaneous symmetry breaking as function of T
- Geometric critical behaviour:

spontaneous global connection as function of n

geometric critical behaviour can occur even if the partition function is analytic

⇒ geometric without thermodynamic criticality (spin systems in external magnetic field)

 \Rightarrow End of Interlude \Leftarrow

To study percolation in (central) A - A collisions:

- number of partons per nucleon
 - deep inelastic lepton-nucleon scattering gives parton distributions/nucleon, determines parton number at resolution scale Q:

$$\left(\frac{dN}{dy}\right)_{y=0} = x\{g(x,Q) + \sum_{i} [q_i(x,Q) + \bar{q}_i(x,Q)]\}$$

with $x = Q/\sqrt{s}$ at y = 0.

- in nucleon-nucleon collisions, resolution scale $Q \sim k_T$ defined by transverse parton size
- number of parton sources per nucleus

$$\left(\frac{dN}{dy}\right)_{y=0}^{A} = A\left(\frac{dN}{dy}\right)_{y=0}$$

- transverse size of nucleus πR_A^2
- transverse size of parton

$$\pi r^2 \simeq \pi/\langle k_T^2 \rangle = \pi/Q^2$$

intrinsic transverse momentum

Combine to get <u>parton percolation condition</u> for central A - A collisions

$$\frac{2A}{\pi A^{2/3}} \left(\frac{dN(\sqrt{s}, Q)}{dy} \right)_{y=0} = n_c = \frac{1.13}{\pi Q^{-2}}$$

specifies A_s, Q_s , so that given \sqrt{s} , for $A \ge A_c$ and for parton scale $Q \le Q_s$

\exists parton percolation

In general:

 $\Rightarrow n_c$ depends on A, centrality, collision energy

schematic: central A-A collisions vs. A and \sqrt{s}

schematic: Pb-Pb collisions vs. centrality

SPS, $\sqrt{s} = 20 \text{ GeV}$

parton network:

- partons of all scales $k_T \leq Q$
- interconnected and interacting
- geometric deconfinement
- no thermalization, but:

initial state fulfills <u>prerequisite for thermalization</u> necessary, but not <u>necessarily sufficient</u>

assume: parton network thermalizes \rightarrow QGP

energy density of QGP [Bjorken estimate]

$$\epsilon_0 \simeq \frac{p_0}{\pi R_A^2 \tau_0} \left(\frac{dN_h^{AA}}{dy} \right)_{y=0} \simeq \frac{p_0}{\pi \tau_0} A^{0.43} \ln(\sqrt{s}/2)$$

 τ_0 : time needed to reach thermalization if partons do not form network, they cannot thermalize, $\tau_0 = \infty$

schematic: central collisions energy density vs. A

for
$$\sqrt{s} = 20 \text{ GeV}$$

 $\frac{\sqrt{s} = 20 \text{ GeV}}{\epsilon \text{ [GeV/fm}^3]}$ 3.0
2.0
1.0
50
100
150

schematic: Pb-Pb collisions energy density vs. centrality for $\sqrt{s}=20$ GeV

 \Rightarrow hot QGP, well above deconfinement

$$[\epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3]$$

experimental consequences?

3. Experimental Signatures

Initial state parton structure \Rightarrow geometric critical behavior \Rightarrow parton network

Parton network thermalizes \Rightarrow QGP \Rightarrow thermal critical behavior \Rightarrow hadronization

- how to probe and distinguish geometric and thermal critical behavior?
- what observable features follow already from parton percolation, parton network?
- do present data provide any evidence for (or against) thermalization?

Consider as illustration

J/ψ Suppression

- charmonium states survive in confined matter, dissolve in hot enough QGP (different dissociation temperatures for different states).
- resolution scale in parton network at SPS (\sqrt{s} = 20 GeV, $Q \simeq 0.7$ GeV) allows χ_c break-up at and above percolation point; J/ψ ?
- Feed-down J/ψ production in hadronic collisions: 60 % direct 1S, 30 % χ_c decay, 10 % ψ' decay; different dissociation points \Rightarrow step-wise J/ψ suppression.

- Pre-resonance absorption in nuclei \Rightarrow reduced J/ψ production in pA collisions, <u>normal</u> J/ψ suppression.
- NA50 observes further anomalous J/ψ suppression in stepwise form.

- What does it mean?
 - geometric deconfinement

'step' at $N_{part} \simeq 125$: onset of colour connection, formation of parton network; perhaps also at ~ 250 , when resolution scale in parton network reaches J/ψ scale.

– formation of hot QGP:

nothing happens at $\epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3$: no parton connection, no QGP; at parton percolation, QGP possible; there $\epsilon \simeq 2.3 \text{ GeV/fm}^3$, and \exists step in data

 \Rightarrow observed J/ψ suppression pattern may be due to initial state parton percolation or to subsequent thermal QGP formation

Conclude:

- matter in equilibrium: statistical QCD
 ⇒ thermal deconfinement, quark-gluon plasma
- nuclear collisions: parton structure
 ⇒ geometric deconfinement, parton network
- thermalization of parton network, QGP formation in nuclear collisions? Quite possible:
 - the future will tell -