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1. States of Matter in QCD

What happens to strongly interacting matter in
the limit of high temperature and/or density?

e hadrons have intrinsic size r, ~ 1 fm

hadron needs V}, ~ (47/3)r;} to exist

= limiting density of hadronic matter
ne=1/Vy >~ 1.5 ng

e hadronic resonance dynamics —

exponential growth of hadron species
p(m) ~ exp(bm)

— statistical bootstrap model

— dual resonance model

= limiting temperature of hadronic
matter 7. = 1/b ~ 150 — 200 MeV

e what happens beyond n., 7.7

QCD: hadrons are dimensionful color-neutral
bound states of pointlike coloured quarks and
gluons

hadronic matter: colourless constituents
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quark-gluon plasma: coloured constituents

deconfinement ~ insulator-conductor transition

2



e effective quark mass shift
at 7' =0, quarks ‘dress’ with gluons

my — M, = constituent quarks

in hot medium, dressing ‘melts’ M, — 0

for m, = 0, Lgocp has chiral symmetry
M, # 0: spontaneous chiral symmetry breaking

M, — 0 = chiral symmetry restoration

e diquark matter
deconfined quarks ~ attractive interaction
— coloured bosonic ‘diquark’ pairs
(Cooper pairs of QCD)

= diquark condensate ~ colour superconductor

thermal agitation can break diquark binding:

transition superconductor — conductor

e expected phase diagram of QCD:

T
TC \

hadronic matter quark-gluon plasma

diquark matter

He W

baryochemical potential i ~ baryon density.



e statistical QCD:

given QCD as dynamics dynamics input, calcu-
late resulting thermodynamics, based on QCD
partition function Zycp(T,V)

ADb initio calculation:

= finite temperature/finite density lattice QCD

e order parameters

— deconfinement

Polyakov loop L ~ exp{—Vo/T'}

Voo: potential energy of QQ pair for r — oo

= L=0 : confinement
L+#0 : deconfinement

— deconfinement temperature 77,

— chiral symmetry restoration

chiral condensate x = (¢¥)) ~ M,

measures ‘constituent’ quark mass

= x #0 : chiral symmetry broken

X =0 : chiral symmetry restored

— chiral symmetry restoration temperature 7T,

— how are 77, and T, related?



lattice results

Polyakov loop

conclude:

chiral condensate

deconfinement and chiral symmetry restoration
coincide, determine critical temperature 7,

Ny=2,24+1: T, ~ 175 MeV

in chiral limit (m, — 0).

® energy density

ideal gas of massless pions

Eh:3

2
g 4 ~, 74
ey S

ideal gas of massless quarks (Ny=2) and gluons

egap = 37 79:_(2) T4 ~12 T

deconfinement = sudden increase in energy

density: “latent heat of deconfinement”




lattice results
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Ny =2,241: €(T,) ~0.5—1.0 GeV/fm’

for deconfinement energy density.

e interaction range (from string breaking) drops
sharply as T' — T,
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= colour screening




e consequence: charmonium suppression
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J/1 survives until 1.5-2.0 T,
Y. suppressed essentially at T,

NB: equilibrium QCD thermodynamics

e nature of transition

depends on Ny and m,:

continuous, first order, cross-over (percolation)

structure for p =0

«—— second order ——» flrs/t/order

physical point

cross—over region

Myd



e non-zero net baryon density (u#0, Ny> N;),

computer algorithms break down, power series...

conjecture for u # 0, Ny =2+1

deconfinement

A

critical point
first order

confinement

He H

critical point in 7T—u plane depends on position
of physical point in m;—m, plane

preliminary results (m,, power series, ...)

* ‘ IT 1'0

- u/T=1.

- pjT:O.S 4
quT:O.G
quT:OA
quT:O.Z
quT:0.0

net baryon density fluctuations increase with p,

— approach to critical point . ~ 0.3 — 0.7 GeV



e conclude:

in QCD, 4 critical temperature 7,

at which

— deconfinement sets in

— chiral symmetry is restored

— latent heat of deconfinement increases energy
density

— colour screening reduces interaction range

Can all this be tested in the laboratory?



2. High Energy Nuclear Collisions

High energy A— A collisions produce many nucleon-
nucleon collisions in same space time region

8 J

Canonical view of high enery heavy ion collision

hadronic matter | t
free r‘madrons

pre-equilibrium

Assume:

multiple parton interactions — thermalization,
hot thermal medium: quark-gluon plasma,
thermal deconfinement /confinement transition,

emission of hadrons

10



conditions for thermalization?

prerequisite :

1 communication (‘cross talk’, ‘colour connection’)
between partons from different nucleon interactions

counterexample : hadron production at LEP

(b)

consider hadron multiplicity from jet decay of W’s

— cross talk:
= Njp(a) < 2Ny(D)

— no cross talk:
= Nh(a) = 2Nh<b> < 3 LEP expts.

same space-time region, but no cross talk

= pre-equilibrium initial state conditions crucial
for final state of high energy nuclear collisions

= parton percolation, colour glass condensate
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Consider partons in nuclear collisions:

Lorentz-contracted nuclei (A—A)

—> <=

superposition of partons: parton density in trans-
verse plane increases with A, /s

with increasing density:

partons overlap — clusters in transverse plane;
within a cluster, partons communicate

® how does cluster size grow with parton density?

e when does partonic cluster size ~ system size
(— parton network, global cross-talk)?

= Short Interlude: Percolation Theory <«

Percolation ~ formation of infinite cluster, network
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example: 2-d disk percolation (lilies on a pond)

distribute small disks of area a = 7r? randomly on

large area F = L?, L > r, with overlap allowed

isolated disks clusters per colation
(network)

for N disks, disk density n = N/F

average cluster size S(n) increases
with increasing density n

3 critical density: for S(n)
A
n—n.=1.13/a

S(n) spans area F: S ~ F

for N — oo, FF — oc:
S(n.) and (dS(n)/dn),=p, |

Ng n

diverge: = percolation

probability P(n) that given disk in infinite cluster

=0 Vn<n,
P(n)
~ (n—n.)"” for n — n, from above

= order parameter for percolation
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average cluster size diverges
S(n) ~ |n —n|™

so do other observables: singular behaviour as func-
tion of density n

= critical exponents, universality classes

Why is there singular behaviour?

= spontaneous global connection

connected or disconnected, not “gradual”

= Geometric Critical Behaviour <

e onset of infinite cluster/network formation

e singular behaviour of geometric observables

e Thermodynamic critical behaviour:

spontaneous symmetry breaking as function of 7T’

o (Geometric critical behaviour:

spontaneous global connection as function of n

geometric critical behaviour can occur even if the
partition function is analytic

= geometric without thermodynamic criticality

(spin systems in external magnetic field)

= End of Interlude <
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To study percolation in (central) A — A collisions:

e number of partons per nucleon

- deep inelastic lepton-nucleon scattering gives
parton distributions/nucleon, determines par-
ton number at resolution scale ():

dN
<@>FO— {g(z,Q) + Eij[qz(:c, Q) + @iz, Q)I}

with z = Q/+/s at y = 0.

- in nucleon-nucleon collisions, resolution scale
Q) ~ kr defined by transverse parton size

e number of parton sources per nucleus

(d_N>A A<d_N>
dy y=0 dy y=0

e transverse size of nucleus 7R

e transverse size of parton
mr? ~ )/ (k3) = 7/Q?

intrinsic transverse momentum

Combine to get parton percolation condition for
central A — A collisions

2A [(dN(/s,Q) . 1.13
T A2/3 dy y=0 Y Q2
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specifies A, ()5, so that given /s, for A > A, and for
parton scale () < (),

d parton percolation

In general:
= n. depends on A, centrality, collision energy

parton network
schematic: 200 (colour connection)
central A— A collisions parton|percolation
vs. A and +/s ol
discrete
partons
10 102 103 /s [GeV]
10
parton network
schematic: Evr;/]ax (colour connection)
Pb— Pb collisions "
. 05
vs. centrality
SPS, \/E = 20 GeV discrete
partons SPS vs=20GeV
50 100 150 A

parton network:

— partons of all scales ky < ()

— interconnected and interacting
— geometric deconfinement

— no thermalization, but:

initial state fulfills prerequisite for thermalization
necessary, but not necessarily sufficient

assume: parton network thermalizes — QGP
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energy density of QGP [Bjorken estimate]

e~ PO
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7TR1247'0

To: time needed to reach thermalization

p
> ~ W—%AM?’ In(y/s/2)
y=0

if partons do not form network, they cannot ther-

malize, 1) = o0

schematic:
central collisions
energy density
vs. A
for /s =20 GeV

schematic:

Pb— Pb collisions

energy density
vs. centrality

for /s =20 GeV
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= hot QGP, well above deconfinement
[ €(T.) ~ 0.5 — 1.0 GeV /fm’]

experimental consequences?
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3. Experimental Signatures

Initial state parton structure = geometric critical
behavior = parton network

Parton network thermalizes = QGP = thermal
critical behavior = hadronization

e how to probe and distinguish geometric and
thermal critical behavior?

e what observable features follow already from
parton percolation, parton network?

e do present data provide any evidence for (or
against) thermalization?

Consider as illustration

J/1) Suppression

e charmonium states survive in confined matter,
dissolve in hot enough QGP (different dissoci-
ation temperatures for different states).

e resolution scale in parton network at SPS (/s =
20 GeV, Q ~ 0.7 GeV) allows y. break-up at and
above percolation point; J/1?

e Feed-down J/vy production in hadronic collisions:
60 % direct 1S, 30 % x. decay, 10 % ' de-
cay; different dissociation points = step-wise
J /1 suppression.
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e Pre-resonance absorption in nuclei = reduced
J /1 production in pA collisions, normal J/v¢ sup-
pression.

e NA50 observes further anomalous J/¢ suppres-
sion in stepwise form.
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e What does it mean?

— geometric deconfinement

‘step’ at N, ~ 125: onset of colour connec-
tion, formation of parton network; perhaps
also at ~ 250, when resolution scale in par-
ton network reaches J/v scale.

— formation of hot QGP:

nothing happens at ¢(7T.) ~ 0.5 — 1.0 GeV /fm?>:
no parton connection, no QGP;

at parton percolation, QGP possible; there
e ~ 2.3 GeV /fm’, and 3 step in data

= observed J/i suppression pattern may be due
to initial state parton percolation or to subsequent
thermal QGP formation
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Conclude:

e matter in equilibrium: statistical QCD

= thermal deconfinement, quark-gluon plasma

e nuclear collisions: parton structure

= geometric deconfinement, parton network

e thermalization of parton network, QGP forma-
tion in nuclear collisions? Quite possible:

— the future will tell —
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