Lattice study of the QCD critical point

Philippe de Forcrand ETH Zürich and CERN

original work in collaboration with Owe Philipsen (Münster)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

QCD Phase diagram

Heavy-ion collisions

Heavy-ion collisions

Heavy-ion collisions

- does not behave like superposition of N N collisions
- well described by relativistic hydrodynamic fluid

Strongly Interacting Quark-Gluon Plasma found

Phase boundary versus freeze-out temperature?

At fixed \sqrt{s} , relative abundances of hadrons fitted well with (T, μ_B)

Phase boundary versus freeze-out temperature?

Repeat for successive \sqrt{s} :

Phase boundary versus freeze-out temperature?

J. Cleymans et al., hep-ph/0607164

Phase boundary versus freeze-out temperature?

J. Cleymans et al., hep-ph/0607164

• T = 0 when $\mu_B \approx m_N$: boundary of *inelastic* collisions T(freeze-out), not related to T_c (QGP)

• T(freeze-out) $\leq T_c$ (QGP) but very close?

Braun-Munzinger, Stachel & Wetterich, nucl-th/0311005

Schematic phase diagram – perhaps

Schematic phase diagram – perhaps

Can one locate the critical point (μ_E, T_E) by lattice simulations?

The sign and overlap problems

• Integrate over fermions: det $(\not \! D + m + \mu \gamma_0)$ complex unless $\mu = 0$ or $\mu = i\mu_i$

 \rightarrow standard importance sampling impossible

The sign and overlap problems

• Integrate over fermions: det($\not D + m + \mu \gamma_0$) complex unless $\mu = 0$ or $\mu = i \mu_i$

 \rightarrow standard importance sampling impossible

- **Reweighting**: simulate theory with no sign pb., eg. $\mu = 0$
 - reweight each measurement with $\rho(U) = \frac{\det(U, \mu \neq 0)}{\det(U, \mu = 0)}$ complex

-
$$\langle \rho(U) \rangle = \frac{Z(\mu \neq 0)}{Z(\mu = 0)} \sim \exp(-V \frac{\Delta f(\mu)}{T}) \rightarrow \text{large } V$$
 ?, large μ ?

- 1. maintain statistical accuracy on $\langle \rho \rangle :$ sign pb.
- **2.** ensure that $Z(\mu \neq 0)$ is properly sampled: **overlap** pb.

1 and **2** require statistics $\propto \exp(+V)$

The sign and overlap problems

• Integrate over fermions: det($\not D + m + \mu \gamma_0$) complex unless $\mu = 0$ or $\mu = i \mu_i$

 \rightarrow standard importance sampling impossible

- **Reweighting**: simulate theory with no sign pb., eg. $\mu = 0$
 - reweight each measurement with $\rho(U) = \frac{\det(U,\mu\neq 0)}{\det(U,\mu=0)}$ complex

-
$$\langle \rho(U) \rangle = \frac{Z(\mu \neq 0)}{Z(\mu = 0)} \sim \exp(-\frac{V \Delta f(\mu)}{T}) \rightarrow \text{large } V$$
 ?, large μ ?

- 1. maintain statistical accuracy on $\langle \rho \rangle :$ sign pb.
- **2.** ensure that $Z(\mu \neq 0)$ is properly sampled: **overlap** pb.

1 and **2** require statistics $\propto \exp(+V)$

• Measure derivatives w.r.t. μ at $\mu = 0$: $\langle W(\mu) \rangle = \langle W(\mu = 0) \rangle + \sum_k c_k \left(\frac{\mu}{\pi T}\right)^k$

- directly at $\mu = 0$ MILC, TARO, Bielefeld-Swansea, Gavai-Gupta,...
- by fitting polynomial to $\mu = i\mu_i$ results D'Elia-Lombardo, PdF-Philipsen,...

Controlled thermodynamics and continuum limits \Rightarrow derivatives only

The good news: curvature of the pseudo-critical line

All with $N_f = 4$ staggered fermions, $am_q = 0.05, N_t = 4$ ($a \sim 0.3$ fm)

The good news: curvature of the pseudo-critical line

All with $N_f = 4$ staggered fermions, $am_q = 0.05, N_t = 4$ ($a \sim 0.3$ fm)

The good news: curvature of the pseudo-critical line

Intro Sign pb. Tc CEP Results Discussion Concl.

The good news: curvature of the pseudo-critical line

• Signal from critical pt. washed out by evolution until freeze-out

• Only control parameters: \sqrt{s} and A

The bad news: locating the critical point

M. Stephanov, hep-lat/0701002

Challenging task:

detect divergent correlation length (2nd order)

vs finite but large (crossover, 1rst order)

on small lattice

Mission impossible? finite-size scaling crucial - more control parameters

Critical point already determined, but...

Fodor & Katz: hep-lat/0402006 (~ physical quark masses)

Strategy: reweight from ($\mu = 0, T_c$) along pseudo-critical line

Legitimate concerns:

- Discretization error? $N_t = 4 \implies a \sim 0.3 \text{ fm}$
- Abrupt qualitative change near μ_E :

abrupt change of physics or breakdown of algorithm (Splittorff)?

 \rightarrow repeat with conservative approach (derivative)

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}}$
Karsch et al.
• Need $n \to \infty$, not $n = 1$ or 2
 $\sqrt{\left|\frac{c_2}{c_4}\right|}$ is not a lower or upper bound
• Other definitions just as good, eg. $\lim_{n \to \infty} \left|\frac{c_0}{c_{2n}}\right|^{\frac{1}{2n}}$

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}}_{T_E}$
Karsch et al.

• Need $n \to \infty$, not $n = 1$ or 2
$$\sqrt{\left|\frac{c_2}{c_4}\right|}$$
 is not a lower or upper bound
$$\sqrt{\left|\frac{c_2}{c_4}\right|}$$
is not a lower or $upper$ bound
$$\frac{12}{1.15} = \lim_{n\to\infty} \sqrt{\left|\frac{T}{c_60}\right|} = \lim_{n\to\infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}$$
• Also $\frac{n_q}{T^3} = \sum_{n=1}^{\infty} 2n c_{2n} \left(\frac{\mu}{T}\right)^{2n-1} \to \frac{\mu_E}{T_E} = \lim_{n\to\infty} \sqrt{\left|\frac{2n c_{2n}}{(2n+2)c_{2n+2}}\right|}$
 $n = 1 \to factor 1/\sqrt{2}$

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}}_{T_E}$
Karsch et al.

• Need $n \to \infty$, not $n = 1$ or 2
$$\sqrt{\left|\frac{c_2}{c_4}\right|}$$
 is not a lower or upper bound
$$\int_{0.86}^{1.2} \int_{0.86}^{1.16} \int_{0.86}^{1.1$$

Systematic error uncontrolled

Better strategy?

Generalize QCD to arbitrary $(m_{u,d}, m_s)$, T: phase diagram

 $\mu = 0$

For heavy quarks, first-order region shrinks (PdF, Kim, Takaishi, hep-lat/0510069)

1. Tune quark mass(es) to $m_c(0)$: 2nd order transition at $\mu = 0, T = T_c$ known universality class: 3*d* Ising

2. Measure derivatives
$$\frac{d^k m_c}{d\mu^{2k}}|_{\mu=0}$$
:

$$rac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1} {f C_k} \left(rac{\mu}{\pi T}
ight)^{2k}$$

Others Strategy

Observable: Binder cumulant

- Probability distribution of order parameter
 - distinguishes crossover (Gaussian) vs 1rst order (2 peaks)
 - 2nd order: scale-invariant distribution with known Ising exponents
 - encoded in Binder cumulant

Results: hep-lat/0607017, 0808.1096

1. Line of second-order phase transitions in the quark mass plane $(m_{u,d}, m_s)$ via Binder cumulant $B_4 = \langle (\delta \bar{\psi} \psi)^4 \rangle / \langle (\delta \bar{\psi} \psi)^2 \rangle^2$

 $\mu = 0$:

- data consistent with tricritical point at $m_{u,d} = 0, m_s \sim 2.8 T_c$
- physical point in crossover region

cf. Fodor & Katz

Results: hep-lat/0607017, 0808.1096

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? $B_4(am, a\mu) = 1.604 + \sum_{k,l=1} b_{kl} (am - am_0^c)^k (a\mu)^{2l}$

 $\frac{d \, am^c}{d(a\mu)^2} = -\frac{\partial B_4}{\partial (a\mu)^2} / \frac{\partial B_4}{\partial am} = -b_{01}/b_{10}, \text{ hard / easy}$

Results: hep-lat/0607017, 0808.1096

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? $B_4(am, a\mu) = 1.604 + \sum_{k,l=1} b_{kl} (am - am_0^c)^k (a\mu)^{2l}$ $\frac{d am^c}{d(a\mu)^2} = -\frac{\partial B_4}{\partial (a\mu)^2} / \frac{\partial B_4}{\partial am} = -b_{01}/b_{10}$, hard / easy

Answer: very little change (\rightarrow surface almost vertical)

1. Finite- μ : MC at several $\mu = i\mu_i$, fit $B_4(\mu_i)$ with truncated Taylor series in μ^2 Danger: truncation error?

Intro Sign pb. T_c CEP Results Discussion Concl. Methods $N_t = 4, N_f = 2+1$ $N_t = 6, N_f = 3$ Two methods to measure change in B_4 : $\frac{\partial B_4}{\partial (a\mu)^2}$

1. Finite- μ : MC at several $\mu = i\mu_i$, fit $B_4(\mu_i)$ with truncated Taylor series in μ^2 Danger: truncation error?

2. Derivative: MC at $\mu = 0$, reweight to small $\mu = i\mu_i$, measure $\frac{\Delta B_4}{\Delta \mu^2}$ Advantage: fluctuations cancel in ΔB_4 Two methods to measure change in B_4 : $\frac{\partial B_4}{\partial (a\mu)^2}$

Intro Sign pb. T_c CEP Results Discussion Concl.

1. Finite- μ : MC at several $\mu = i\mu_i$, fit $B_4(\mu_i)$ with truncated Taylor series in μ^2 Danger: truncation error?

Methods $N_t = 4, N_f = 2 + 1$ $N_t = 6, N_f = 3$

2. Derivative: MC at $\mu = 0$, reweight to small $\mu = i\mu_i$, measure $\frac{\Delta B_4}{\Delta \mu^2}$ Advantage: fluctuations cancel in ΔB_4

Ph. de Forcrand

SM&FT, Sept. 2008

Two methods to measure change in B_4 : $\frac{\partial B_4}{\partial (a\mu)^2}$

Intro Sign pb. T_c CEP Results Discussion Concl.

1. Finite- μ : MC at several $\mu = i\mu_i$, fit $B_4(\mu_i)$ with truncated Taylor series in μ^2 Danger: truncation error?

Methods $N_t = 4, N_f = 2 + 1$ $N_t = 6, N_f = 3$

2. Derivative: MC at $\mu = 0$, reweight to small $\mu = i\mu_i$, measure $\frac{\Delta B_4}{\Delta \mu^2}$ Advantage: fluctuations cancel in ΔB_4

$N_t = 4, N_f = 2 + 1$: moving along the critical line

LQCD on the Computing Grid

- 725k trajectories (2 quark masses) in 2 months \rightarrow 115 CPU years
- on average 700 CPUs active at all times
- 330k files = 3 TB of data transferred
- computing support provided by CERN IT/GS: thanks a lot!

- calculations on EGEE Grid
- resources provided by CERN, CYFRONET (Poland), CSCS (Switzerland), NIKHEF (Holland) + 10 more across Europe

Intro Sign pb. T_c CEP Results Discussion Concl. Methods $N_t = 4, N_t = 2+1$ $N_t = 6, N_t = 3$ $N_t = 6, N_f = 3$: towards the continuum limit 1. $\mu = 0$: re-tune the quark mass for 2nd-order transition at $T = T_c$ \rightarrow At $T = 0, \frac{m_{\pi}}{T} = 0.954(12)$ instead of 1.680(4) ($N_t = 4$)

Critical surface moves further away from physical point

0

$N_t = 6, N_f = 3$: towards the continuum limit

• $18^3 \times 6$, am = 0.003, $m_{\pi} = 0.95T_c \sim 170$ MeV ($m_{\pi}L = 2.9$) 120k trajectories, 6 months of SX-8

•
$$b_{01} = -58(49) \ (\mu^2 \text{ fit}) \rightarrow c_1 = -28(23), \text{ ie. } \frac{m_c(\mu)}{m_c(0)} = 1 - 28(23) \ (\frac{\mu}{\pi T})^2$$

for $b_{01} = -88(75) \ (\mu^2 + \mu^4 \text{ fit})$]

• Assume $c_1 = +18$, ie. 2 sigmas away; then $\frac{\mu_E}{T_E} = 1 \Rightarrow \frac{m_c(\mu_E)}{m_c(0)} \sim 3$, insufficient to reach physical point

Standard scenario

Arguments for standard wisdom?

• O(4) transition for 2 massless flavors Pisarski & Wilczek \Rightarrow tricritical points ($m_{u,d} = 0, m_s = \infty, \mu = \mu^*$) and ($m_{u,d} = 0, m_s = m_s^*, \mu = 0$)

 O(4) transition for 2 massless flavors Pisarski & Wilczek \Rightarrow tricritical points ($m_{u,d} = 0, m_s = \infty, \mu = \mu^*$) and ($m_{u,d} = 0, m_s = m_s^*, \mu = 0$) • $N_f = 2$ and $N_f = 2 + 1$ analytically connected Real world Heavy quarks 1rst order μ crossover 1rsf Irst ord

m_{u,d}

Arguments for standard wisdom?

Critique:

• O(4) if strong enough $U_A(1)$ anomaly, otherwise first-order

Chandrasekharan & Mehta

Phase diagram Standard wisdom

Arguments for standard wisdom?

Critique:

• O(4) if strong enough $U_A(1)$ anomaly, otherwise first-order

Chandrasekharan & Mehta

• $N_f = 2$ and $N_f = 2 + 1$ need not be connected

Conclusions

Race between theory and experiment: no finish line?

• $\frac{m_c(\mu)}{m_c(0)} = 1 + \mathbf{c_1} \left(\frac{\mu}{\pi T}\right)^2 + \ldots$ can control systematics $\begin{array}{ll} N_t = 4, & N_f = 3 & \text{LO+NLO} & 0808.1096 \\ & N_f = 2+1 & \text{LO} & \text{soon} \\ N_t = 6, & N_f = 3 & \text{LO} & \text{underway} \end{array}$ Non-standard scenario $c_1 < 0$ favored

 a → 0: critical surface far from physical point \implies need $c_1 > 0$ and large for $\frac{\mu_E}{T_E} \lesssim 1$, disfavored by data

Backup slides

Backup slides

Backup slides

Backup slides

Contradiction with other lattice studies?

• Fodor & Katz:
$$(T_E, \mu_E) = (162(2), 120(13))$$
 MeV ?

• Very little μ -dependence until $\mu \sim \mu_E \rightarrow$ need high-degree Taylor expansion

• $m_q a$, ie. $\frac{m_q}{T_c}$ fixed, while $T_c(\mu)$ decreases for $\mu \neq 0 \Rightarrow$ non-const. physics Lighter quarks at larger μ favor first-order transition

Contradiction with other lattice studies?

• Gavai & Gupta: $\mu_E/T_E \lesssim 1$? different theory $N_f = 2$

• Agreement with isospin μ

Kogut-Sinclair, PdF-Stephanov-Wenger