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Entanglement

Bipartite systems VS Multipartite systems

Two
subsystems A 

and B: evaluate
entanglement
between them

Many
subsystems: 

?!?!
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Entanglement

then the state is SEPARABLE. Otherwise it is ENTANGLED.

If one can write the state in a factorized form

Consider two systems A and B in a state 

Applications in many-body physics (see: Amico et al. Rev. Mod .Phys. 2008)

Objective: characterizing Multipartite Entanglement

Objective: define Maximally Multipartite Entangled States
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Entanglement

and a partition of the ensemble in two subsystems A and B 

We consider an ensemble of nn two-
level systems (qubits) in the state

A

B

What is the bipartite entanglement between A and B?

PurityPurity (linear entropy):
a measure of bipartite
entanglement

= eigenvalues of

= dimension of the Hilbert space

For a generic state one can find its diagonal form
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Separable for bipartition A-BMax entangled for bipartition A-B

Entanglement is “encoded” in the eigenvalues of the density matrix

Entanglement
The reduced density matrix of subsystem A is
obtained by tracing on the degrees of freedom of B

Its purity is

Only one eigenvalue different from 0All eigenvalues = 1/NA

Dimension of the Hilbert space of A
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The distribution of       characterizes the entanglement of the system.
The average will be a measure of the amount of entanglement in the 
system, while the variance will measure how well such entanglement 
is distributed: a smaller variance will correspond to a larger 
insensitivity to the choice of the partition.
(See Facchi, G.F., Pascazio [PRA 74, 042331 (2006)])

Characterization of multipartite entanglement
The quantity completely defines the BIPARTITE ENTANGLEMENT
(one number is sufficient). ItIt dependsdepends on the on the bipartitionbipartition.

What about MULTIPARTITE ENTANGLEMENT? The numbers needed
to characterize the system scale exponentially with its size.

Statistical methods
Seminals ideas from
Man’ko, Marmo, Sudarshan, Zaccaria:(J. Phys. A 02-03)
Parisi: complex systems
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For chaotic systems

Separable states

Perfect maximally multipartite
entangled states (MMES)

A

B

B

A

Chaotic phenomena can generate (typical) states
with a large amount of entanglement (see Facchi, 
G.F. Pascazio, PRA 2006; Rossini, Benenti PRL 2008)

Distribution for a typical state 
(generated by chaotic phenomena)  

Is it possible to reach the ideal minimum 
for all bipartitions?  

NO, for n > 7 there is frustrationfrustration
(see Scott PRA2004)
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Obtaining a MMES
Maximally multipartite entangled state (MMES): minimizer of the  potential of 
multipartite entanglement (see Facchi, G.F., Parisi, Pascazio PRA 2008)

Due to linearity, it inherits the bounds

Minimization over 
balanced bipartitions

If we want to reach a delta distribution…
we introduce the generalized cost function

nA is the number of 
qubits in subsystem A

variance

Lagrange multiplier > 0

A B

B

A
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Optimization
We search MMES of the form 

For a given bipartition we find

2 qubits

3 qubits

minimization

4 qubits The system of 4 qubits is 
frustrated (we send to 0 the 
variance for weigths
but not a perfect MMES)
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Larger systems
For larger system the optimization procedure is more difficult.

We find a number of local minima where deterministic algorithms get stuck

Stochastic algorithms Simulated annealing (see Kirkpatrick et al., Science 1983)

Cost E(s) Start in a configuration s. At each step the 
algorithm chooses a new configuration s’
and probabilistically decides if let the 
system in s or move it to s’.

The acceptance probability must depend on 
the “energy difference” E(s’)-E(s) and on a 
“temperature”; it is non zero when ΔE > 0; 
thus it is possible to pass barriers.

s

A simple choice is using the Metropolis algorithm with a Boltzmann factor.

The schedule for the temperature lowering depends on the problem
(usually, the slower, the better).
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5-6 qubits
For 5 qubits we tested the case of phases = 0 or π

It turns out that it is always possible to find a perfect MMES with these phases
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reaches the 
value of 1/8 and the 
variance goes to 0. 

Also in this case it is 
possible to find a 
perfect MMES

This is a typical run 
for 6 qubits. 

0.001 0.01 0.1 1
TêT max

1μ 10-5

5μ 10-5
1μ 10-4

5μ 10-4

0.010
0.005

0.001

sME
T(k) = 0.95k Tmax



Bari -- SM&FT 08 12

7 qubits

In this case one has to find a 
compromise between average 
entanglement and width of the 
distribution. 

The numerical optimization of            
shows that it is not possible to reach 
the ideal value 1/8. Thus we have to 
optimize the cost function  
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Let’s change strategy…

We will recast the problem in a classical statistical mechanical problem.We will recast the problem in a classical statistical mechanical problem.

We consider the state

The set of  

The potential of entanglement is a function of the coefficients

The minimization problem becomes easily very complicated (system
size + frustration). We search another strategy to define MMES…

The minimization problem becomes easily very complicated (system
size + frustration). We search another strategy to define MMES…
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Let’s change strategy…
We introduce the partition function:  

with the measure  
normalization

and a fictitious inverse temperature 

A brief summaryA brief summary

(see Facchi, GF, Marzolino, Parisi, 
Pascazio arxiv:0803.4498)



Bari -- SM&FT 08 15

Statistical Mechanics
Suppose we have the distribution at infinite temperature

The distribution at ARBITRARY temperature is

Limits for the distribution
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Statistical Mechanics
For the average we find

Limits: 

Derivative:
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Statistical Mechanics
We can evaluate the cumulants of the distribution at high temperature: 

The average is the same of the purity

For independent bipartitions:

There is an interaction among the bipartitions

Variance:
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Gaussian Approximation
Higher order  cumulants decrease faster Gaussian approximation

Valid if
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Dependence on the “Temperature”

Rigid shift

Deformation

When the tail “touches” the minimum, the distribution is deformed
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Dependence on the “Temperature”

What if                           ? 

This picture is valid if

order of the first non vanishing derivative
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Conclusions

We defined a characterization of multipartite entanglement that is based on the 
framework of bipartite entanglement but with statistical information.

We defined an optimization problem for deriving a class of Maximally 
Multipartite Entangled States (MMES)

We recasted the problem in terms of a classical statistical mechanical problem

We obtained a non trivial form of the second cumulant of the energy 
distribution and some features of the high temperature behaviour. 
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