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3d U(1) LGT

T = 0
The theory is confining at all values of the bare coupling constant.

Finite T
Deconfining phase transition.

3d U(1) LGT is one of the simplest model
with continous gauge symmetry which possess

the same fundamental properties as QCD.
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3d U(1) LGT

Critical behavior

DUAL LATTICE

- 3d U(1) LGT in the Villain formulation coincides with the 2d XY
model in the leading order of the high-temperature expansion.

SVETITSKY-YAFFE

- If correlation lenght diverges, the finite-temperature phase
transition in the 3d U(1) LGT should belong to the 2d XY
universality class.

3d U(1) LGT and 2d XY
in the same universality class?
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XY: Berezinskii-Kosterlitz-Thouless transition

MERMIN-WAGNER Theorem
The global U(1) symmetry cannot be spontaneously broken in 2d.
A local order parameter does not exist.

Transition is understood in terms of the unbinding of
topological object:

- SPIN (2d XY)↔ POLYAKOV LOOP (3d U(1) LGT)

- VORTICES (2d XY)↔MONOPOLES (3d U(1) LGT)
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Berezinskii-Kosterlitz-Thouless transition

”Bound” phase

Γ(R) ∼ 1
Rη(T)

Logarithmic non-confining potential between charges

”Unbound” phase

Γ(R) ∼ exp[−R/ξ(t)]

Linear confining potential between charges

ESSENTIAL SCALING

ξ ∼ ebt−ν
t = T/Tc − 1
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Berezinskii-Kosterlitz-Thouless transition

XY UNIVERSALITY CLASS

ν = 1/2 η(Tc) = 1/4

3d U(1) LGT

An approximated RG calculationa indicates η(Tc) = 1/4
A numerical checkb confirms the BKT nature of the phase transition,
but concludes η(Tc) ∼ 0.78!!!

aSvetitsky and Yaffe (1982)
bCoddington et al. (1986)

WE PROPOSE A NUMERICAL STUDY OF THE CRITICAL
PROPERTIES OF 3d U(1) LTG THEORY
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3d U(1) LGT: definitions

Partition function:

Z(βt, βs) =
∫ 2π

0

∏
x∈Λ

2∏
n=0

dωn(x)
2π

exp S[ω]

Action

S[ω] = βs

∑
ps

cos ω(ps) + βt

∑
pt

cos ω(pt)

Λ = L2 × Nt



Introduction The model Numerics Conclusion and Outlooks

Parameters:

βt =
1

g2at
, βs =

ξ

g2as
= βtξ

2, ξ =
at

as

g is the continuum coupling constant.

Finite-temperature limit

ξ → 0, Nt, L →∞, atNt =
1
T

Correlator:

Γ(R) = 〈P†xPx+R〉 =

〈
exp

i
Nt−1∑
x0=0

(ω0(x0, x1, x2)− ω0(x0, x1, x2 + R))

〉
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In this talk βs = 0

Z(βt, βs = 0) =∫ 2π

0

∏
x∈Λ2

dωx

2π

∏
x,n

[ ∞∑
r=−∞

INt
r (βt) exp [ir(ω(x)− ω(x + en))]

]

Λ2 = L2 and ω(x) ≡ ω(x1, x2).

Nt = 1 : Using
∑

r Ir(x)eirω = ex cos ω

Z(βt, βs = 0)|Nt=1 =
∫ 2π

0

∏
x

dω(x)
2π

exp[βt

∑
x,n

cos(ω(x)−ω(x+en))]

XY Partition function
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In this talk βs = 0

Nt ≥ 2 :
The leading order of strong coupling expansion is XY model

Z(βt � 1, βs = 0) =
∫ 2π

0

∏
x

dω(x)
2π

exp[h(βt)
∑
x,n

cos(ω(x)−ω(x+en))]

h(βt) = 2[
I1(βt)
I0(βt)

]Nt , Γ(R) = [
1
2

h(βt)]R

Z(βt � 1, βs = 0) =
∞∑

r(x)=−∞

exp[−1
2
β̃

∑
x

2∑
n=1

(r(x)− r(x + en))2]

Villain partition function with effective coupling β̃ = Nt/βt
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Set-up

Z(βt, βs = 0) =∫ 2π

0

∏
x∈Λ2

dωx

2π

∏
x,n

[ ∞∑
r=−∞

INt
r (βt) exp [ir(ω(x)− ω(x + en))]

]
Λ2 = L2 and ω(x) ≡ ω(x1, x2).

Z(βt, βs = 0) ≡
∫ 2π

0

∏
x

dω(x)
2π

exp S′

Action

S′ =
∑
x,n

log
{

1 + 2
∞∑

r=1

[br(βt)]Nt cos r(ω(x)− ω(x + en))
}

br(β) = Ir(β)/I0(β)
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Nt = 1

The main indication of BKT critical behavior is a peculiar scaling of
the pseudo-critical coupling with the spatial lattice size L:

βpc(L)− βc ∼
1

(log L)1/ν
,

this is consequence of the essential scaling.

βpc(L) is determined with the maximum of susceptibility

χ = L2〈|P|2〉 , P =
1
L2

∑
x

Px
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Nt = 1

βpc(L) = βc +
A

(log L)2 , ν = 1/2

L = 128, 150, 200, 256
βc(Nt = 1) = 1.107(9) and A(Nt = 1) = −2.4(2) (χ2/d.o.f.=0.78)

Best determiation: βc = 1.1199(1)2

Logarithmic corrections

χ(βc) ∼ L2−ηc(log L)−r, r = 1/8

2Hasenbusch and Pinn (1997), Hasenbusch (2005)
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Nt = 1

βpc(L) = βc +
A

(log L)2 , ν = 1/2

L = 128, 150, 200, 256
βc(Nt = 1) = 1.107(9) and A(Nt = 1) = −2.4(2) (χ2/d.o.f.=0.78)

No logarithmic corrections

χ(βc) ∼ L2−ηc

χ(β = 1.12) for L=64, 128, 150, 200, 256

ηc = 0.256(29) (χ2/d.o.f.=0.2)
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Nt = 1

Correlator

C(R) =
∑
x,n

<
(

P†xPx+R·en

)

Logarithmic corrections

C(R) ∼ (log R)−r

Rηc
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Nt = 1

Effective index ηc

ηeff(R) ≡ log[C(R)/C(R0)]
log[R0/R]

η(β = 1.12) = ηeff(R = 6) = 0.23101(49)

η(β = 1.107) = 0.24085(44)
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Nt = 1

Rescaled correlation

L−ηC(R) ≡ f (
R
L

)

f is an universal function.
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Nt ≥ 2

Essential scaling

βpc(L) = βc +
A

(log L)2 , ν = 1/2

Nt = 4: βc(Nt = 4) = 3.42(1) and A(Nt = 4) = −5.1(3)
(χ2/d.o.f.=0.43, L = 64, 150, 200)

Nt = 8: βc(Nt = 8) = 6.38(5) and A(Nt = 8) = −15(1)
(χ2/d.o.f.=0.006, L = 64, 128, 150)

BKT , ν OK!
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Susceptibility

χ(βc) ∼ L2−ηc

Nt = 4: ηc(Nt = 4) = 0.290(54) (χ2/d.o.f.=0.69)
L = 64, 128, 150, 200, 256

Nt = 8: ηc(Nt = 8) = 0.212(46) (χ2/d.o.f.=0.43)
L = 64, 128, 150, 200, 256

η(βc) OK!
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Nt ≥ 2

Nt = 4
η(β = 3.42) = ηeff(Nt = 4, R = 2) = 0.2724(11)

Nt = 8
η(β = 6.38) = ηeff(Nt = 8, R = 3) = 0.2499(11)
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Nt ≥ 2

Nt = 4

Nt = 8
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Conclusions
We give strong indications that 3d U(1) pure gauge theory belongs to
the universality class of 2d XY model in the case βs = 0, by verifing
scaling laws at criticality and comparing critical inices.

Outlooks

βs 6= 0
We are extending this analysis to the βs 6= 0 case and draw the phase
diagram of the full theory in the (βt, βs) plane.
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THANK YOU!
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