Introduction

The model

Numerics

うして ふぼう ふほう ふほう しょうく

Critical behavior of the compact 3d U(1) theory in the limit of zero spatial coupling¹

Mario Gravina UNICAL and INFN - Cosenza

collaborators: O. Borisenko and A. Papa

Bari, 3rd September 2008

¹J. Stat. Mech. (2008) P08009

Introduction	The model	Numerics	
00000	0000	000000000000	
Out of line			

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Introduction 00000	The model	Numerics 000000000000	
Out of line			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- IntroductionWhy 3d U(1) LGT?
 - BKT transition
- 2 The model • Definitions • $\beta_s = 0$

Introduction 00000	The model	Numerics 000000000000	
Out of line			

<□> <@> < E> < E> = E = のへで

- Introduction • Why 3d U(1) LGT?
 - BKT transition
- The model Definitions
 - $\beta_s = 0$

- Set-up
- Results $N_t = 1$
- Results $N_t \ge 2$

Introduction	The model	Numerics	
00000	0000	000000000000	
Out of line			

<□> <@> < E> < E> = E = のへで

- Introduction • Why 3d U(1) LGT?
 - BKT transition
- The model Definitions
 - $\beta_s = 0$

- Set-up
- Results $N_t = 1$
- Results $N_t \ge 2$

Introduction •••••	The model	Numerics	Conclusion and Outlooks
3 <i>d</i> U(1) LGT			

T = 0

The theory is confining at all values of the bare coupling constant.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Finite *T* Deconfining phase transition.

Introduction •••••	The model	Numerics 00000000000	Conclusion and Outlooks
3 <i>d</i> U(1) LGT			

T = 0

The theory is confining at all values of the bare coupling constant.

Finite *T* Deconfining phase transition.

3d U(1) LGT is one of the simplest model with continous gauge symmetry which possess the same fundamental properties as QCD.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

3*d* U(1) LGT

Critical behavior

DUAL LATTICE

- 3*d* U(1) LGT in the Villain formulation coincides with the 2*d* XY model in the leading order of the high-temperature expansion.

SVETITSKY-YAFFE

- If correlation lenght diverges, the finite-temperature phase transition in the 3*d* U(1) LGT should belong to the 2*d* XY universality class.

イロト (得) (ヨト (ヨト) ヨー のくぐ

3*d* U(1) LGT

Critical behavior

DUAL LATTICE

- 3*d* U(1) LGT in the Villain formulation coincides with the 2*d* XY model in the leading order of the high-temperature expansion.

SVETITSKY-YAFFE

- If correlation lenght diverges, the finite-temperature phase transition in the 3*d* U(1) LGT should belong to the 2*d* XY universality class.

3*d* U(1) LGT and 2*d* XY in the same universality class?

 Introduction
 The model
 Numerics

 00000
 0000
 00000000000

Conclusion and Outlook

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

XY: Berezinskii-Kosterlitz-Thouless transition

MERMIN-WAGNER Theorem

The global U(1) symmetry cannot be spontaneously broken in 2*d*. A local order parameter does not exist.

Transition is understood in terms of the unbinding of topological object:

- SPIN $(2d XY) \leftrightarrow$ POLYAKOV LOOP (3d U(1) LGT)
- VORTICES $(2d XY) \leftrightarrow MONOPOLES (3d U(1) LGT)$

Berezinskii-Kosterlitz-Thouless transition

"Bound" phase $\Gamma(R) \sim \frac{1}{R^{\eta(T)}}$ Logarithmic non-confining potential between charges

"Unbound" phase

$$\Gamma(\mathbf{R}) \sim \exp[-\mathbf{R}/\xi(t)]$$

Linear confining potential between charges

ESSENTIAL SCALING

$$\xi \sim e^{bt^{-\nu}} \qquad t = T/T_c - 1$$

・ロト・日本・日本・日本・日本・日本

Berezinskii-Kosterlitz-Thouless transition

XY UNIVERSALITY CLASS

$$\nu = 1/2 \qquad \eta(T_c) = 1/4$$

<□> <@> < 注 > < 注 > < 注 > のへぐ

Berezinskii-Kosterlitz-Thouless transition

XY UNIVERSALITY CLASS

$$\nu = 1/2 \qquad \eta(T_c) = 1/4$$

3d U(1) LGT

An approximated RG calculation^{*a*} indicates $\eta(T_c) = 1/4$ A numerical check^{*b*} confirms the BKT nature of the phase transition, but concludes $\eta(T_c) \sim 0.78!!!$

・ロト・日本・日本・日本・日本・日本

^{*a*}Svetitsky and Yaffe (1982) ^{*b*}Coddington et al. (1986)

Berezinskii-Kosterlitz-Thouless transition

XY UNIVERSALITY CLASS

$$\nu = 1/2 \qquad \eta(T_c) = 1/4$$

3d U(1) LGT

An approximated RG calculation^{*a*} indicates $\eta(T_c) = 1/4$ A numerical check^{*b*} confirms the BKT nature of the phase transition, but concludes $\eta(T_c) \sim 0.78!!!$

^{*a*}Svetitsky and Yaffe (1982) ^{*b*}Coddington et al. (1986)

WE PROPOSE A NUMERICAL STUDY OF THE CRITICAL PROPERTIES OF 3d U(1) LTG THEORY

Introduction

The model ●○○○ Numerics

Conclusion and Outlooks

<□> <@> < 注 > < 注 > < 注 > のへぐ

3d U(1) LGT: definitions

Partition function:

$$Z(\beta_t, \beta_s) = \int_0^{2\pi} \prod_{x \in \Lambda} \prod_{n=0}^2 \frac{d\omega_n(x)}{2\pi} \exp S[\omega]$$

Action

$$S[\omega] = \beta_s \sum_{p_s} \cos \omega(p_s) + \beta_t \sum_{p_t} \cos \omega(p_t)$$

 $\Lambda = L^2 \times N_t$

The model	
0000	

Parameters:

$$\beta_t = \frac{1}{g^2 a_t}, \quad \beta_s = \frac{\xi}{g^2 a_s} = \beta_t \xi^2, \quad \xi = \frac{a_t}{a_s}$$

g is the continuum coupling constant.

Finite-temperature limit

$$\xi \to 0, \quad N_t, L \to \infty, \quad a_t N_t = \frac{1}{T}$$

Correlator:

$$\Gamma(R) = \langle P_x^{\dagger} P_{x+R} \rangle = \left\langle \exp\left[i \sum_{x_0=0}^{N_t-1} (\omega_0(x_0, x_1, x_2) - \omega_0(x_0, x_1, x_2 + R))\right] \right\rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	The model	Numerics	Conclusion and Outlooks
00000	○○●○	00000000000	
In this talk $\beta_s =$	0		

$$Z(\beta_t, \beta_s = 0) = \int_0^{2\pi} \prod_{x \in \Lambda_2} \frac{d\omega_x}{2\pi} \prod_{x,n} \left[\sum_{r=-\infty}^{\infty} I_r^{N_t}(\beta_t) \exp\left[ir(\omega(x) - \omega(x+e_n))\right] \right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

 $\Lambda_2 = L^2$ and $\omega(x) \equiv \omega(x_1, x_2)$.

The model	

In this talk $\beta_s = 0$

$$Z(\beta_t, \beta_s = 0) = \int_0^{2\pi} \prod_{x \in \Lambda_2} \frac{d\omega_x}{2\pi} \prod_{x,n} \left[\sum_{r=-\infty}^{\infty} I_r^{N_t}(\beta_t) \exp\left[ir(\omega(x) - \omega(x + e_n))\right] \right]$$

$$\Lambda_2 = L^2 \text{ and } \omega(x) \equiv \omega(x_1, x_2).$$

$$N_t = 1: \text{ Using } \sum_r I_r(x) e^{ir\omega} = e^{x\cos\omega}$$

$$Z(\beta_t, \beta_s = 0)|_{N_t=1} = \int_0^{2\pi} \prod_x \frac{d\omega(x)}{2\pi} \exp[\beta_t \sum_{x,n} \cos(\omega(x) - \omega(x + e_n))]$$

XY Partition function

00000		Numerics 0000000000000	Conclusion and Outlooks
In this talk $\beta_s =$	= 0		

$N_t \ge 2$: The leading order of strong coupling expansion is XY model

$$Z(\beta_t \ll 1, \beta_s = 0) = \int_0^{2\pi} \prod_x \frac{d\omega(x)}{2\pi} \exp[h(\beta_t) \sum_{x,n} \cos(\omega(x) - \omega(x + e_n))]$$
$$h(\beta_t) = 2\left[\frac{I_1(\beta_t)}{I_0(\beta_t)}\right]^{N_t}, \quad \Gamma(R) = \left[\frac{1}{2} h(\beta_t)\right]^R$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	The model	Numerics	Conclusion and Outlooks
00000	○○○●	00000000000	
In this talk $\beta_s =$	0		

$N_t \ge 2$: The leading order of strong coupling expansion is XY model

$$Z(\beta_t \ll 1, \beta_s = 0) = \int_0^{2\pi} \prod_x \frac{d\omega(x)}{2\pi} \exp[h(\beta_t) \sum_{x,n} \cos(\omega(x) - \omega(x + e_n))]$$
$$h(\beta_t) = 2\left[\frac{I_1(\beta_t)}{I_0(\beta_t)}\right]^{N_t}, \quad \Gamma(R) = \left[\frac{1}{2} h(\beta_t)\right]^R$$

$$Z(\beta_t \gg 1, \beta_s = 0) = \sum_{r(x) = -\infty}^{\infty} \exp[-\frac{1}{2}\tilde{\beta}\sum_{x}\sum_{n=1}^{2}(r(x) - r(x + e_n))^2]$$

Villain partition function with effective coupling $\tilde{\beta} = N_t / \beta_t$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	••••••	
Set-up			

$$Z(\beta_t, \beta_s = 0) = \int_0^{2\pi} \prod_{x \in \Lambda_2} \frac{d\omega_x}{2\pi} \prod_{x,n} \left[\sum_{r=-\infty}^\infty I_r^{N_t}(\beta_t) \exp\left[ir(\omega(x) - \omega(x+e_n))\right] \right]$$
$$\Lambda_2 = L^2 \text{ and } \omega(x) \equiv \omega(x_1, x_2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	••••••	
Set-up			

$$Z(\beta_t, \beta_s = 0) = \int_0^{2\pi} \prod_{x \in \Lambda_2} \frac{d\omega_x}{2\pi} \prod_{x,n} \left[\sum_{r=-\infty}^{\infty} I_r^{N_t}(\beta_t) \exp\left[ir(\omega(x) - \omega(x + e_n))\right] \right]$$

$$\Lambda_2 = L^2 \text{ and } \omega(x) \equiv \omega(x_1, x_2).$$

$$Z(\beta_t, \beta_s = 0) \equiv \int_0^{2\pi} \prod \frac{d\omega(x)}{2\pi} \exp S'$$

$$Z(\beta_t, \beta_s = 0) \equiv \int_0^{2\pi} \prod_x \frac{d\omega(x)}{2\pi} \exp S$$

Action

$$S' = \sum_{x,n} \log \left\{ 1 + 2 \sum_{r=1}^{\infty} [b_r(\beta_t)]^{N_t} \cos r(\omega(x) - \omega(x + e_n)) \right\}$$
$$b_r(\beta) = I_r(\beta) / I_0(\beta)$$

The main indication of BKT critical behavior is a peculiar scaling of the pseudo-critical coupling with the spatial lattice size *L*:

$$eta_{pc}(L) - eta_c \sim rac{1}{(\log L)^{1/
u}},$$

▲ロト ▲ 帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q (~

this is consequence of the essential scaling.

The main indication of BKT critical behavior is a peculiar scaling of the pseudo-critical coupling with the spatial lattice size *L*:

$$eta_{pc}(L) - eta_c \sim rac{1}{(\log L)^{1/
u}},$$

this is consequence of the essential scaling.

 $\beta_{pc}(L)$ is determined with the maximum of susceptibility

$$\chi = L^2 \langle |P|^2 \rangle$$
, $P = \frac{1}{L^2} \sum_x P_x$

▲ロト ▲ 帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q (~

Introduction

The mode

Numerics

Conclusion and Outlooks

$N_t = 1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

L = 128, 150, 200, 256 $\beta_c(N_t = 1) = 1.107(9)$ and $A(N_t = 1) = -2.4(2) (\chi^2/\text{d.o.f.}=0.78)$

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

L = 128, 150, 200, 256 $\beta_c(N_t = 1) = 1.107(9)$ and $A(N_t = 1) = -2.4(2) (\chi^2/\text{d.o.f.}=0.78)$ Best determiation: $\beta_c = 1.1199(1)^2$

²Hasenbusch and Pinn (1997), Hasenbusch (2005) (1005) (1005) (1005)

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

L = 128, 150, 200, 256 $\beta_c(N_t = 1) = 1.107(9)$ and $A(N_t = 1) = -2.4(2) (\chi^2/\text{d.o.f.}=0.78)$

Logarithmic corrections

$$\chi(\beta_c) \sim L^{2-\eta_c} (\log L)^{-r}, \ r = 1/8$$

²Hasenbusch and Pinn (1997), Hasenbusch (2005) (1005) (1005) (1005)

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

L = 128, 150, 200, 256 $\beta_c(N_t = 1) = 1.107(9)$ and $A(N_t = 1) = -2.4(2) (\chi^2/\text{d.o.f.}=0.78)$

No logarithmic corrections

$$\chi(\beta_c) \sim L^{2-\eta_c}$$

・ロト・日本・日本・日本・日本・日本

 $\chi(\beta = 1.12)$ for *L*=64, 128, 150, 200, 256

 $\eta_c = 0.256(29) \ (\chi^2/\text{d.o.f.}=0.2)$

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	000000000000000000000000000000000000	
$N_t = 1$			

Correlator

$$C(R) = \sum_{x,n} \Re \left(P_x^{\dagger} P_{x+R \cdot e_n} \right)$$

Logarithmic corrections

$$C(R) \sim rac{(\log R)^{-r}}{R^{\eta_c}}$$

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

Correlator

$$C(R) = \sum_{x,n} \Re \left(P_x^{\dagger} P_{x+R \cdot e_n} \right)$$

No logarithmic corrections

$$C(R) \sim rac{1}{R^{\eta_c}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction 00000	The model	Numerics 000000000000	Conclusion and Outlooks
$N_t = 1$			

Effective index η_c

$$\eta_{\rm eff}(R) \equiv \frac{\log[C(R)/C(R_0)]}{\log[R_0/R]}$$

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	00000000000	
$N_t = 1$			

Effective index η_c

$$\eta_{\rm eff}(R) \equiv \frac{\log[C(R)/C(R_0)]}{\log[R_0/R]}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	The model	Numerics	
00000	0000	000000000000	
$N_t = 1$			

Rescaled correlation

$$L^{-\eta}C(R) \equiv f(\frac{R}{L})$$

f is an universal function.

・ロト・個ト・モト・モト ヨー・シタウト

Introduction 00000	The model	Numerics 000000000000	Conclusion and Outlooks
$N_t > 2$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

Introduction 00000	The model 0000	Numerics	Conclusion and Outlooks
$N_t > 2$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

$$N_t = 4$$
: $\beta_c(N_t = 4) = 3.42(1)$ and $A(N_t = 4) = -5.1(3)$
(χ^2 /d.o.f.=0.43, $L = 64, 150, 200$)

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	000000000000	
$N_t > 2$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

$$N_t = 4$$
: $\beta_c(N_t = 4) = 3.42(1)$ and $A(N_t = 4) = -5.1(3)$
(χ^2 /d.o.f.=0.43, $L = 64, 150, 200$)

$$N_t = 8$$
: $\beta_c(N_t = 8) = 6.38(5)$ and $A(N_t = 8) = -15(1)$
(χ^2 /d.o.f.=0.006, $L = 64, 128, 150$)

Introduction	The model	Numerics	Conclusion and Outlooks
00000	0000	000000000000	
$N_t > 2$			

$$\beta_{pc}(L) = \beta_c + \frac{A}{(\log L)^2}, \quad \nu = 1/2$$

$$N_t = 4$$
: $\beta_c(N_t = 4) = 3.42(1)$ and $A(N_t = 4) = -5.1(3)$
(χ^2 /d.o.f.=0.43, $L = 64, 150, 200$)

$$N_t = 8: \beta_c(N_t = 8) = 6.38(5) \text{ and } A(N_t = 8) = -15(1)$$

(χ^2 /d.o.f.=0.006, $L = 64, 128, 150$)

BKT , ν OK!

	юċ		
00	0	20	

 $\chi(\beta_c) \sim L^{2-\eta_c}$

	Numerics	
	000000000000000000000000000000000000000	

$$\chi(\beta_c) \sim L^{2-\eta_c}$$

$$N_t = 4$$
: $\eta_c(N_t = 4) = 0.290(54) (\chi^2/\text{d.o.f.}=0.69)$
 $L = 64, 128, 150, 200, 256$

	Numerics	
	000000000000000000000000000000000000000	

$$\chi(\beta_c) \sim L^{2-\eta_c}$$

$$N_t = 4$$
: $\eta_c(N_t = 4) = 0.290(54) (\chi^2/\text{d.o.f.}=0.69)$
 $L = 64, 128, 150, 200, 256$

$$N_t = 8: \eta_c(N_t = 8) = 0.212(46) (\chi^2/\text{d.o.f.}=0.43)$$

 $L = 64, 128, 150, 200, 256$

		Numerics	Conclusion and Outlooks
		000000000000000000000000000000000000000	
00000	0000	000000000000000000000000000000000000000	

$$\chi(\beta_c) \sim L^{2-\eta_c}$$

$$N_t = 4$$
: $\eta_c(N_t = 4) = 0.290(54) (\chi^2/\text{d.o.f.}=0.69)$
 $L = 64, 128, 150, 200, 256$

$$N_t = 8: \eta_c(N_t = 8) = 0.212(46) (\chi^2/\text{d.o.f.}=0.43)$$

 $L = 64, 128, 150, 200, 256$

$\eta(\beta_c) \operatorname{OK!}$

・ロト・西ト・ヨト・ヨー もんぐ

00000	0000

Numerics

Conclusion and Outlooks

 $N_t \geq 2$

$$N_t = 4$$

 $\eta(\beta = 3.42) = \eta_{\text{eff}}(N_t = 4, R = 2) = 0.2724(11)$

Introduction 00000	The model	Numerics	Conclusion and Outlooks
$N_t \geq 2$			

 $N_t = 8$

 $N_t = 4$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

	Conclusion and Outlooks

Conclusions

We give strong indications that 3d U(1) pure gauge theory belongs to the universality class of 2d XY model in the case $\beta_s = 0$, by verifing scaling laws at criticality and comparing critical inices.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

	Conclusion and Outlooks

Conclusions

We give strong indications that 3d U(1) pure gauge theory belongs to the universality class of 2d XY model in the case $\beta_s = 0$, by verifing scaling laws at criticality and comparing critical inices.

Outlooks

$\beta_s \neq 0$

We are extending this analysis to the $\beta_s \neq 0$ case and draw the phase diagram of the full theory in the (β_t, β_s) plane.

・ロト・日本・日本・日本・日本・日本

Numerics

Conclusion and Outlooks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

THANK YOU!