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We study the behaviour of the monopole at finite temperature in the (2+41)-dimensional
lattice gauge theory dual to the percolation model; by exploiting the correspondences to statistical
systems, we possess powerful tools to evaluate the monopole mass both above and below the
critical temperature with high-precision Monte Carlo simulations.
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QCD vacuum as a dual superconductor

One of the oldest and most trusted proposals for quark confinement is the dual superconductor
picture [Polyakov '75; 't Hooft '78, Mandelstam '76]:

type Il superconductor QCD vacuum

Meissner effect dual Meissner effect

S

duality

(D) #0 = (@) # 0
Vim(R) < R Vig(R) ~ oR
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Electric and magnetic lines

In three dimensions, an electric (magnetic) static source is inserted in x via a nonlocal
operator which also places an electric (magnetic) flux-line joining x to oo:

Wilson fine o™ ] t Hooft line
external quark <= external monopole

On the lattice the flux lies on dual links (i. e. plaquettes)

(magnetic flux through red plaquettes)
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Confinement, order and disorder parameters

While the Wilson loop <W> (therefore o as well) is an order parameter for confinement,
<<I>m> Is a disorder parameter:

colour singlets only (liquid) plasma (gaseous)

§ O g o
0 T. ~ 2T, T
Confined phase Deconfined phase
Symmetric phase Broken phase
Percolation of magnetic strings: Percolation of electric strings:

(gauge field disordered) (order in gauge configurations)
(@) # 0 (@) =0
(®.) =0 (P.) #0

The operator ®@,,, can be put in relation to the monopole condensate.
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The deconfinement transition

Confinement is due to magnetic degrees of freedom.

At T < T, they form the monopole condensate.
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At the critical point, the condensate melts down (only lines wrapped locally around imaginary
time survive): its leftovers will be real, thermal monopoles [Chernodub, Zakharov '06].

= The plasma must exhibit a magnetic component (i. e. monopoles)!
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Some remarks

e “Abelian vs. non-Abelian”

— Monopoles are well defined and understood in Abelian theories. To approach non-Abelian
theories, one relies on Abelian projections, thanks to the Abelian/monopole dominance
phenomenon ['t Hooft '81].

— In discrete Abelian theories there are no dynamical monopoles: they need to be inserted
as external sources.

e The typical investigation is carried on in terms of an operator p (~ finite-temperature monopole
density), and the corresponding correlators examined are p(x)p(y). We will instead possess
a microscopic quantum monopole creation operator.
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The case for percolation

We will study the monopole mass and condensate behaviour in the (241)-dimensional
percolation theory both below and above the transition temperature.

Percolation is a well-defined pure gauge theory, despite its apparently trivial construction
[Gliozzi, S. L., Panero, Rago, '04]. Among its properties:

e string effects in loops up to the NNLO;
e glueball spectrum in the confined phase;

e finite-temperature confinement/deconfinement second-order transition, with a “proper”

' ~ Ic
universal ratio NG
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The percolation model in short

e Each link of an empty (2+1)- or 3-dimensional lattice (dual to the gauge one) is switched on
with a probability p € [0, 1] independently.
e At p. an infinite connected cluster appears: second-order critical point.

e The expectation value of a loop W (C): zero if there are clusters with nonzero winding around
C; one otherwise (hence: “on” links ~ magnetic flux lines).

e This implies: confined phase <= p > p..

e This framework is suggested by the chain of maps: Zs-gauge (S,-gauge) = Ising (g-state
Potts) model = Fortuin-Kasteleyn cluster reformulation = lim,_,; of the theory.

e As a guideline, notice that Bgauge = — log(p) . . . were it possible to explicitly formulate the
theory instead of its dual!
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Monopoles & percolation - |

Pedigree of the theory:

3D Kramers-Wannier duality

gauge <~ spin
Sy — g-state Potts
! !
(Sy >~ Zs) — (Ising model)
! !
Our model — Random percolation
q— 1 (clusters ~ F-K clusters ~ magn. strings)
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Monopoles & percolation - |l

e In Zs-gauge, a monopole (= antimonopole) is a cube with total outgoing flux = —1.

e To insert a monopole (and its 't Hooft string) as external source, change 5 — —[3 along an
infinite line of plaquettes (but two superimposed lines are equivalent to nothing!).

e Under duality, a frustrated plaquette (x; j, k) becomes 0,0, ; =>a monopole in x amounts
to just the spin operator o,.

e FExample: a single plaquette flip means a monopole couple at distance 1:

QQQ — <0$0m+1>18mg

e FExample #2: A flip on a finite segment of plaquettes:

a’ﬁ g ﬁ ﬁoy = (oz-1-1---1-oy)
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Monopoles & percolation - Il

The Ising (as well as the generic Potts) model admits F-K representation: the functional
measure Z{%} becomes a sum over all partitions of the lattice into clusters of aligned sites.

Averaging over cluster sign variables one gets:

<a - > 1 if x is connected to vy
vy 0 otherwise

N

This holds for all values of g, including percolation: the correlation function C'(x, y) measures
whether x and y belong to the same connected component.
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Plan of the numerical investigation

1. Probe the zero-momentum projected correlation - T g
. S
function
A7
C(R)= > C(xy) =S .
_ L = 1 ! Y
y1=z1+R T| /
to extract monopole mass(es) via its exponential ‘ L
R

decay. - -

2. Probe, in the confined phase, the monopole condensate with the magnetisation operator
(o)

corresponding, in percolation, to the strength of the infinite cluster <s>
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Some numbers and details

e In the deconfined phase:
at pe = 0.265615 (Le = 7~ = 8), we studied L = 7,6,5,4,3,2,1 (i.e. 1.14 T, < T < 8 T,.);
at p. = 0.268459 (L. = TLC = 7), we studied L = 6,5,4,3,2,1 (i.e 1.17T. < T <7 T.)
e In the confined phase and at criticality:
at pc(1/8), we studied L = 8,9,10,11,12,13,14, 15,17, co (the last being actually 48)
e Spatial size and statistics [current data are still rather preliminary!]:
we inspected about 300.000 to 109 realisations, with a spatial size L ranging from 64 to 256.
C(R) in the confined phase: R = 1,..., Ls/2 in an uncorrelated fashion.

C(R) in the deconfined phase: R = Ls/4, ..., Ls/2 (no strong correlation issues).
e Expectations and functional forms for C(R):

deconfined : C(R) = Ae ™~
confined : C(R) = Ae ™ + <<I>m>2

in case of more than one mass : C(R) = Aje ™ 4 Aje ™28 4. ..
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Results, deconfined phase

e The background constant scales well

7:' I I I I I I I
to zero for large systems. :
. 6F - =
e The correlator clearly shows a single- g MIT=At+B o 5
: 5 t=(T-T )T E
mass behaviour. _o5F (T-TIMe E
® Mass scaling with L is ok. () 45_ A=0.985(4) E
: : : S B=-0.173(6)
e Linear behaviour from slightly above 3 3; x2d.0f.=1.07
o F =
T.: S f
é 2F © pc,L—8 E
3 o P =7 E
m __ Y = E fit 3
. =4 B 1f i E
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. . . but it is broken just above the critical 0 10 2.0 3-0(TT)/4T1.0 5.0 6.0 7.0
point! e

The intercept is at T" ~ 1.11 T,: is the monopole mass zero in [T. , T"|? Does it rise initially

124
as (Tlc) ? (more statistics and sampling needed for an answer)
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System size dependence

3 . .. . .
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When sensible, the scaling is:
_1
m(L) =m(co)+a- LV

with v = % (2D percolation).

(Confined phase scaling seems much more noisy due

to the nonzero background, with an apparent power-
Jaw ~ L~1-3(2))
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Results: monopoles at T' < T,

Monopole correlator, Ls=128 (L=10, Lc=8); stat. 400.000 Monopole correlator after subtraction (log scale)
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2 )
The constant background <<I>m> has to be subtracted to data before looking for masses.
For every spatial size and temperature, a double-mass signal is visible.

At zero temperature there is only one mass (coinciding with the lightest scalar glueball): the two finite-T values
apparently flow both to it (at different temperature scales).

At criticality, we have a single mass again: its non-nullity is only a finite-size effect, which vanishes for large

systems.
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Results, confined phase

First and second mass, confined phase

m_i/Tc
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Results, monopole

Monopole condensate, confined phase

condensate under 7.
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The condensate reaches its I' = 0 value as:

3.00(3)
() iy = (Pu) oy — B+ (%)

Still not enough data to attempt a near-T¢ scaling.

< note that <<I>m>(TC) s zero!
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Conclusions & open issues

We could show that, in the confined phase, there are at least two monopole states, which fall
onto each other at confinement and at zero temperature. In the latter case, their mass coincides
with that of the lightest scalar glueball as was known.

A linearly rising behaviour, with the temperature, of the only mass in the deconfined phase is
observed, but the situation is still puzzling near T..

A
m

1

0 T T

A higher statistics is under production, to help clarify the behaviour just above deconfinement
and to better define under-T, curves (which suffer from major systematics due to the presence of
the background).
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