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1-leg XXZ spin-1/2 ladders with Mobius boundary conditions

Let us introduce the physical system, I. e. two antiferromagnetic spin-1/2
XXZ chains arranged in a closed geometry for different boundary
conditions imposed at the ends. Then we switch, to the interacting case
and describe the following perturbations: railroad, zigzag, 4-spin, 4-dimer.

1. Non interacting system: two spin-1/2 XXZ chains

Total number of sites «— M

H, = Z(s S, +S7S), +AS?S7,)

|

Antiferromagnetic coupling Anisotropy parameter

We assume that the odd sites belong to the down leg of the ladder while the
even sites belong to the up leg. The legs now are non interacting. Let us now
close the chains imposing the following boundary conditions:

M+1=1 M+2=2



Depending on M, we get two topologically inequivalent
boundary conditions:

1. Meven: we get two independent XXZspin-1/2 chains, each one
closed by gluing opposite ends, that is periodic boundary

conditions (PBC).

2.-'—/\//odd: the two legs are not independent, they appear to be
connected at a point upon gluing the opposite ends and the
system can be viewed as a single eight shaped chain, that is
Mobius boundary conditions (MBC).

For M odd the system presents a local topological defect in the gluing point: it
coincides with two closed XXZ spin-1/2 chains, each one with (M+1)/2 sites,
which intersect each other in the topological defect at site /+1=1. The
general Hamiltonian in this case is written as:
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2. Weak interacting system: we introduce the following interactions between the
two spin-1/2 XXZ chains: railroad, zigzag, 4-spin, 4-dimer.
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In the weak coupling limit J,>>CR, for the isotropic XXX case (A=1), we have a
gapful spectrum with the formation of massive spin S=1 and S=0 particles (D.
G. Shelton, A. A. Nersesian, A. M. Tsvelick, PRB 53 (1996) 8521).
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In the weak coupling limit J,>>/#, for the isotropic XXX case (A=1), an
exponentially small gap develops and the weak interchain correlations break
translational symmetry. There is a spontaneous dimerization along with a finite
range incommensurate magnetic order (A. A. Nersesyan, A. O. Gogolin, F. H. L.
Essler, PRL 81 (1998) 910; D. Allen, D. Senechal, PRB 55 (1997) 299).
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4-Spin

Such a coupling can be generated either by phonons or by the conventional
Coulomb repulsion between the holes.
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Such a term plays a crucial role in the presence of the marginal interaction

Hipz29 ONly, because it gives rise to the dynamical generation of the triplet or

smglet mass respectively along two different /G flows.



The XXZspin-1/2 chain in the continuum
limit (abelian bosonization)
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The Fermi surface is made of two points, &=1n/2, and linearizing the energy
spectrum around them we get in the continuum:

G _NV(X) =€ WR(X)+e_ikFXWL(X)



where x=aj, for lattice spacing &, and yy(x) and y, (x) correspond to right and left moving
fermions, which can be bosonized according to:

W R,L(X) ~ e_i¢R’L<X)

By taking the continuum limit and keeping only the marginal operators, we
get Tf‘Te exactly solvable Luttinger Hamiltonian.:

H,, — é [dx|(0,6) +(0,6))

where we defined:
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renormalized velocity Luttinger parameter



A comparison with exact Bethe Ansatz calculations leads to the expressions:

V(A):Jﬂ \/1—iA2 K(A)— T
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The +

assumption of periodic boundary conditions implies the: compactification of
the boson fields:

px+Lt)=g(xt)+2mR, m, eZ,R,=—

¢ 9’ \/R

O(x+L,t)=0(x,t)+2m,R,, m,eZ,R,=2JK

The compactified boson field has the following mode expansion:
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Lareameition technigue o the plane: generalites

(G.Cristofano, G. Maiella, V.Marotta, MPLA 15, 1679 (2000); G. Cristofano, G.
Maiella, V. Marotta, G. Niccoli, NPB 641, 547 (2002); G. Cristofano, V. Marotta, A.
Na%igeo, PLB 571, 250 (2003); G. Cristofano, V. Marotta, A. Naddeo, NPB 679,
621 (2004))

Mother theory: a CFT with ¢=1, described in terms of a boson field ¢(z, Z)
compactified on a circle with general radius ~,. We can define two scalar fields,
symmetric and antisymmetric under Z:

~ _¢(a),E))+¢(ei”a),e_i”E)) ~ _¢(a), E))—¢(ei”a),e_i”5))
X @)= 7 , N o)= 7

Daughter theory: we implement the map z—@? getting an
orbifold CFT with ¢=2. The new theory is described in terms of a
Z-invariant scalar field X and a twisted field ¢ which satisfies
twisted boundary conditions:

}((Z,Z):fi(zﬂz,zﬂz), CD(Z,Z):&)(ZW,ZW)



The mode expansion of these two fields is:
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The field X is a compactified boson with compactification radius RX=R¢/\/2.



Cerenefion techalame on te planes tie deq JOLZ spin-112 ladder

We show that the Twisted Model (TM), generated by Z-reduction technique,
describes the continuum limit of the 2-leg XXZ spin-1/2 ladder with PBC and MBC. It
Is enough to show that the XXZ ladder with // odd and MBC is naturally mapped in
the twisted sector of the TM. Such a system coincides with a system of 2 XXZ chains,
each one with (M+1)/2 sites and size L=a(M+1)/2, which are closed with periodicity
condition in one gluing site common to the 2 chains.

[ Upon bosonizing each chain, we obtain two boson fields ¢, and

?r,, COMpactified on the two circles (up and down) of the same

length L and with the same compactification radius R(I):\/Z(n-
arccosA)/n=1/K.

The topological defect implies the following b.c. for the fields at the gluing point:

¢bp (O’t): ¢DW(O’t)
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The compactification space of the field ¢ is an eight of length 2. and the radius is

d(x+2L,t) =+

(fo, (X+L,t), 0<x<L

doo(X,1), L<x<2L

\

[ do(X,t)+27m,R 0<x<L

¢ 9’

d,(X—Lt)+2mR,, L<x<2L

) S(x+2L,t)=g(xt)+22m,R,

2-reduction

1 Basic steps

27 (r—ix)/ 2L D 27r(f+i><)/2'—’ = ivt 5{((0, E)), CB(C(), E))
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By means of 2-reduction technique we have transformed the boson field ¢
compactified on the eight of length 2/ with radius £, into the two independent
boson fields X and ® compactified on a circle of Iength L, where Ry= R/\/Z Thus
the 2-leg XXZ spin-1/2 ladder with general anisotropy A and MBC is descrlbed by
the twisted sector of the TM.

The speclal X8 case

Let us put A=1, which corresponds to the isotropic XXX ladder.

Mother theory: a CFT with ¢=1, described in terms of a boson field
compactified on a circle with radius R —\/2 (K=1/2).

Daughter theory: as a result of the 2-reduction procedure, we get
an orbifold CFT with ¢=2. The new theory is described in terms of
two boson fields, X and ¢, which describe the spin chains of the
two legs. It decomposes into a tensor product of two CFTs, a
twisted invariant one with ¢=3/2, realized by the boson X and a
Ramond Majorana fermion, while the second has ¢=1/2 and is
realized in terms of a Neveu-Schwartz Majorana fermion: su(2),®/.



Renormalizalion group analysls for Gie JOUI case

Let us consider the weakly interacting 2-leg ladder in the isotropic case, i. e. XXX,
and study the different RG trajectories flowing from the UV fixed point described
by Ql*;l-lf TM with central charge c=2.

The daughter fields X and ® and their duals admit the following representation in
terms of left and right chiral components:

X(2,2)= —iw, m§+ X(2)+X(z), Y(z,2)=X(2)-X(z)
®(z,2) =20y +9(2)+9(2),  6(z,7)=p(2)-5(2)

A representation in terms of four Majorana fermion fields gives (for holomorphic
and anti-holomorphic components):
singl(z) cosgl(z)

(//1(Z)=SinX(Z), ‘//Z(Z)ZCOSX(Z)’ ‘//3(2): N Wo(z) /7

pilz)=-sinX(0) pu(0)=cosX(2) wile)=—""27, ()=




The Lagrangian describing the UV fixed point for the XXX ladder is:

L, = 8i(@ﬂxaﬂx +0,00"D)
7T

v@e the perturbing terms V depend on the particular system under study:
1. Railroad and 4-Spin perturbations: massive flow

Veoirong = —Me (€08 X(z,Z)-cosd(z,7)+2c0s0(z,7)), m, oc IR

3
VRaiIroad = —imR Z W, (Z)()?I (Z)+ 3ile//O (Z)Vo (Z) Majorana fermion
=1

representation

This is a relevant perturbation to the UV fixed point; the y; (i=1,2,3) fields form an

Ising triplet with the same mass my, (su(2), sector) and vy, is an Ising singlet (/

sector) with a larger mass -3my, (D. G. Shelton, A. A. Nersesyan, A. M. Tsvelick,
PRB 53 (1996) 8521).



V, sin =M, (COs X(z,Z)+cosd(z,Z)), m, ocJ,

3 :
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Suchd_relevant mass term ives rise to the same mass contribution m, for all the
Ising fields y, (1=0,1,2, 3? at allows the triplet or singlet mass to vanish also for
finite values of the coupling constants, i.e. far from the UV conformal fixed point ¢=2

We get two possible RG flows: a flow to an IR fixed point with ¢=3/2 as a result

of the Ising / decoupling (m=0, m=0); a flow to a different IR fixed point with
¢c=1/2 as a result of the su(2), decoupling (m=0, m.=0).

2. Zigzag and 4-Dimer perturbations: massive flow

Let us write the non interacting Lagrangian in terms of Majorana fermions only
and observe that the simple continuum limit, without adding the zigzag

perturbation, produces a marginal interaction I/, (D. Allen, D. Senechal, PRB
55 (1997) 299):

1 g g |
L, =— V,(w oy, +Wi§t//i), Vy=...=V, =V~ J,a
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, /
O, = Wl(z )_1 (Z)‘//z (Z)_z (Z) T Wl(z)‘//l (Z)‘//s (2)973 (Z)
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The zigzag interaction is, in the fermionic language:
3
Vyizag = A {(o1 —0,)+ Y (TO(z2)+T <i>(z))}, A, =32 I1=0
i=0

Such an interaction is marginally relevant and contains a non scalar term, whose
effect is simply that of renormalizing the fields and the velocities. After
renormalization, the whole effect of the two terms V,, and V., can be expressed as
a marginal interaction:

1 _ A+ Ay A A
wzag =40, +0,)+ 2(0,-0,), A4 = i :

i dA
The following RG £ _ 877(20 )2
equations hold: dinL + ‘

vV




Under the flow A°, renormalizes to zero while A°. increases and that
results in a dynamical length scale &~exp(1/A°%). The Z, symmetry of L,
and WV;,7,4 SPOntaneously breaks, a mass scale appears dynamically and

provides a non vanishing mass for the four fermions:
m~v:ETi=123 myrV,ET
m=m,=m,=m>0; m,<-m

It is not possible to extract trajectories in the RG flow characterized by a vanishing
mass in the c=1/2 or c=3/2 sector respectively. So, we need to introduce the 4-dimer
perturbation:

V4—Dimer — j’K(C) ﬂ’ ZWJ( ) ( )'77| (Z) ﬂ,’( ~ JK
i#J=0
The whole perturbation is:
VTot EVVZigZag +V4—Dimer = ﬂ“+ (Ol + OZ )+ /1— (Ol - OZ)

A=+, A=



It is now possible to define a path in the RG flow characterized
‘ by a vanishing singlet mass, i.e. mz0, m_=0, as shown by
rewriting V. as:

VTot — Alol + Azoz
A=A+, A, =4 -1

A vanishing singlet mass m_can be obtained by requiring the
marginality of the operator O, along the RG flow. This selects the
condition A, = A_which makes A, to vanish. The triplet mass m, is
dynamically generated and reads as (Fis the momentum cutoff and
v, is the spin triplet velocity):

m, ~ +v,F exp(—1/874, )

The 4-Dimer interaction allows us to describe a RG trajectory flowing from the ¢=2
WV fixed point (TM) toward the Ising /, the ¢c=1/2 IR fixed point, as a result of the
dynamical generation of the mass m, and the consequent decoupling of su(2),.
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