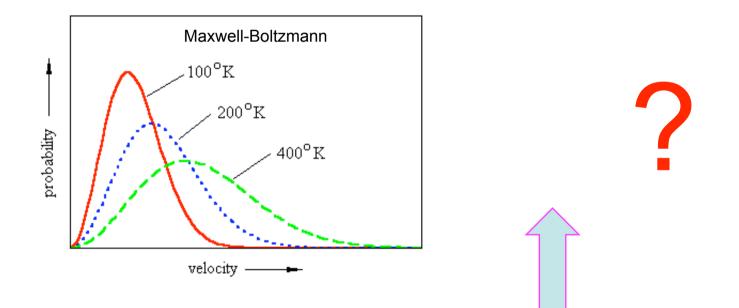
Fluctuation relations in non-equilibrium stationary states lsing models

A.P. & Giuseppe Gonnella (Bari)Federico Corberi (Salerno)Alessandro Pelizzola (Torino)

Outline

Fluctuations in non equilibrium systems

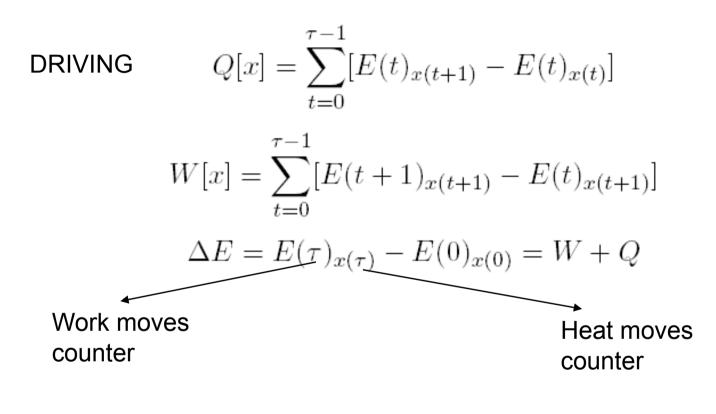


External driving or thermal gradients

Motivations

 Is the FR realized in popular many degree of freedom statistical models (e.g. Ising model)?

Heat and Work definition



TWO TEMPERATURES

$$Q_i[x] = \sum_{t=0}^{\tau-1} [E(t)_{x(t+1)} - E(t)_{x(t)}]|_i$$

(where are considered only the spin-flip of spin in contact with the bath at temperature i)

Microscopic reversibility: Markov chains

Equilibrium:

$$\pi_{ij}\lambda_j = \pi_{ji}\lambda_i \qquad \lambda_i = e^{-\beta(E_i - F)}$$

External work:

Non homogeneous dynamics $\pi = \pi(t)$ because of the time dependent protocol of the externl force

Forward trajectory

0 t=3 $f=\tau - t = \tau - 3$ Intervals with the same external force fixed by the protocol $f=\tau - t = \tau - 3$ Reversal trajectory

 λ is the invariant distribution of $\ \pi(t)$ for every t i.e. the unperturbed dynamics preserves the equilibrium distribution

Transition matrix of the reversal path

$$\pi_{ij}(\tau - t)\lambda_j(\tau - t)_{x(\tau - t)} = \widehat{\pi}_{ji}(t)\lambda_i(\tau - t)_{x(\tau - t + 1)}$$

The FR for systems in contact with two heat baths

Equilibrium: $\pi_{ij}\lambda_j = \pi_{ji}\lambda_i \longrightarrow e^{\frac{q}{T}}\pi_{ij}^q = \pi_{ji}^{-q} \qquad q = E_i - E_j$ $\lambda_i = e^{-\beta(E_i - F)}$

Two temperatures: $e^{\frac{q_1}{T_1} + \frac{q_2}{T_2}} \pi_{ij}^{q_1,q_2} = \pi_{ji}^{-q_1,-q_2}$ Generalized detailed balance

$$\frac{Prob(traj)}{Prob(-traj)} = \frac{\prod_{i=1}^{\tau-1} \pi^{q_{1,i},q_{2,i}}(C_{i+1},C_i) \prod_{i=1}^{\tau-1} P_{H,i}}{\prod_{i=1}^{\tau-1} \pi^{-q_{1,i},-q_{2,i}}(C_i,C_{i+1}) \prod_{i=1}^{\tau-1} P_{H,i}} =$$

$$e^{-\sum_{i=1}^{\tau-1} \left[\frac{q_{1,i}}{T_1} + \frac{q_{2,i}}{T_2}\right]} = e^{-\frac{Q_1}{T_1} - \frac{Q_2}{T_2}} = e^{-\frac{Q_1}{T_1} - \frac{\Delta E - Q_1}{T_2}} = e^{-Q_1 \left(\frac{1}{T_1} - \frac{1}{T_2}\right) - \frac{\Delta E}{T_2}}$$

$$\tau \to \infty \Rightarrow Q_1 >> \Delta E \quad \text{and} \quad \sum_{traj|Q_1} \longrightarrow \quad \frac{P(Q_1)}{P(-Q_1)} = e^{-(\beta_1 - \beta_2)Q_1}$$

Two models: static and dynamic

Transition rates: $\pi(C',C) = \begin{cases} ke^{-\beta_i \Delta E(C',C)} \\ k \end{cases} \begin{pmatrix} \Delta E(C',C) > 0 \\ \text{otherwise} \end{cases}$ $k \not = \sum_{C'} \pi(C',C) = 1 \end{cases}$

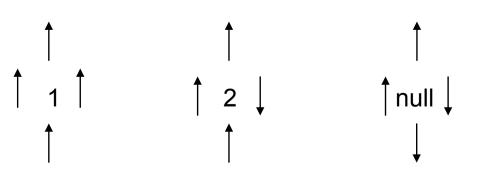
Single spin-flip & Kawasaki $i = \left\{ \begin{array}{cc} 1 & 1 < x \leqslant \frac{L}{2} \\ 2 & \frac{L}{2} < x \leqslant L \end{array} \right.$

 $\begin{array}{l} \text{Dynamic model} \\ i = \left\{ \begin{array}{cc} 2 & \frac{1}{2} |\sum_{\langle j \rangle i} \sigma_i| = 1 \\ 1 & \frac{1}{2} |\sum_{\langle j \rangle i} \sigma_i| = 2 \end{array} \right. \\ \text{with} \quad \beta_2 < \beta_1 \end{array} \right.$

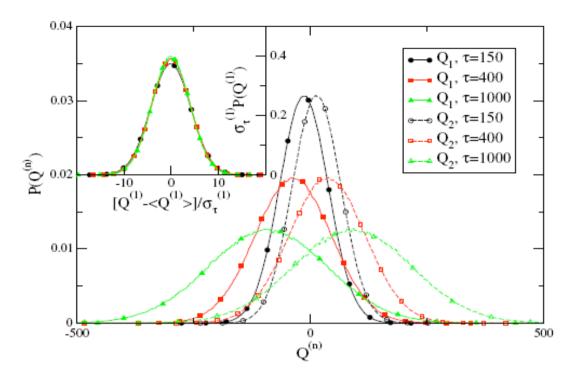
•Single spin-flip dynamics

• Kawasaki dynamics: spin-flip of randomly chosen pairs of first neighbour opposite spins

• Dynamic (Mendez et al.) model

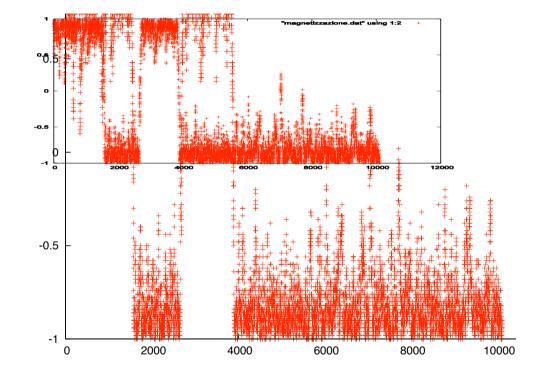


Ising model distribution



Above Tc: T_1 =2.9 and T_2 =3, L=10

Magnetization jumps



Fluctuation-dissipation limit

$$T_2 - T_1 \to 0^+$$

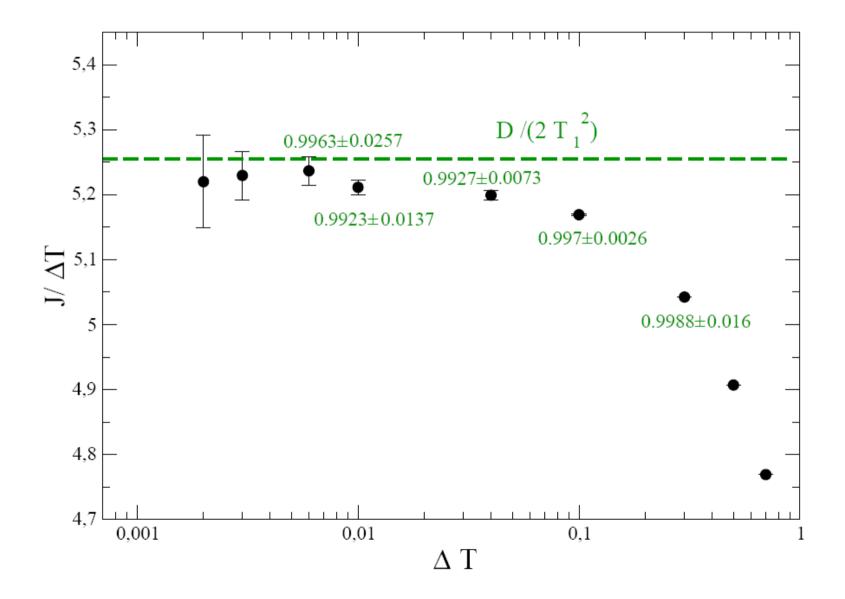
 $\frac{\langle Q_1^2 \rangle_{eq}}{\tau} \to D \quad \text{ for } \quad T_1 = T_2 \longrightarrow D \text{ is the fluctuation coefficient}$

 $\frac{\langle Q_1 \rangle}{\tau} \to (T_1 - T_2) j \quad \text{ for } \quad T_2 - T_1 \to 0^+ \longrightarrow j \quad \text{is the linear response}$

With these definition and exploiting the FR for gaussian fluctuations:

$$\begin{split} \lim_{T_2 - T_1 \to 0^+} \frac{\mu_1}{\tau(T_1 - T_2)} &= \frac{\sigma_{eq}^2}{2T_1^2 \tau} = \frac{D}{2T_1^2} \\ \frac{j}{\Delta T} &= \frac{D}{2T_1^2} \quad \begin{array}{l} \text{Einstein relation for a two} \\ \text{temperature system} \end{split}$$

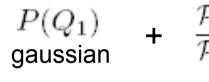
Fluctuation-dissipation limit



Corrections and scaling

Defining ϵ as the correction to the slope 1 (the FR) recovered for $\tau \rightarrow \infty$

$$\frac{P(Q_1)}{P(-Q_1)} = e^{-Q_1(\beta_1 - \beta_2)(1 - \epsilon)}$$

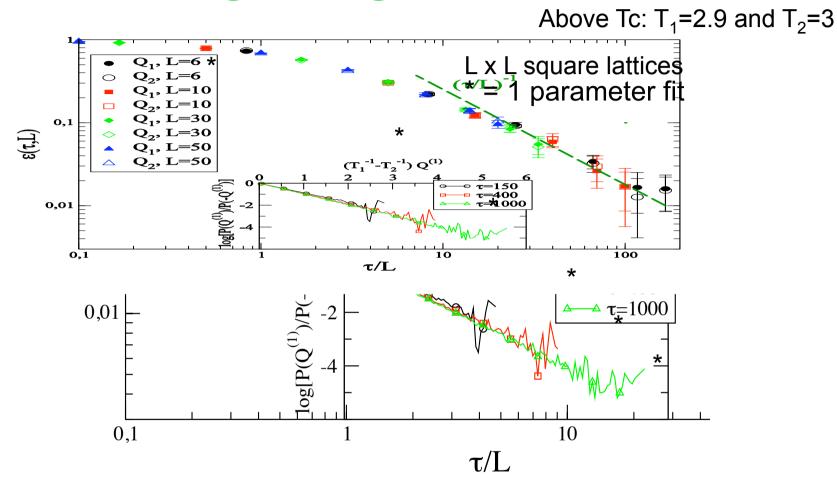


 $\begin{array}{ll} P(Q_1) \\ \text{gaussian} \end{array} \hspace{0.1 cm} + \hspace{0.1 cm} \frac{\mathcal{P}^{staz}(\tau)}{\mathcal{P}^{staz}(0)} \hspace{0.1 cm} \text{One free parameter includes the form of this ratio,} \\ \text{which contains the interaction between the two bulk} \end{array}$ at different temperatures

$$\begin{split} & \text{CORRECTIONS} \\ & \epsilon^{(n)} \Delta \beta^{(n')} \simeq -\frac{\langle Q^{(n)}(\tau) \rangle}{(\sigma_{\tau}^{(n)})^2} \mp \sqrt{\left(\frac{\langle Q^{(n)}(\tau) \rangle}{(\sigma_{\tau}^{(n)})^2}\right)^2 + \frac{v_{\Delta E}^2}{(\sigma_{\tau}^{(n)})^2} (\Delta \beta^{(n')})^2} \\ & \text{SCALING} \\ & \lim_{\tau \to \infty} \epsilon^{(n)} = \frac{\Delta \beta^{(n')} v_{\Delta E}^2 (\sigma_{\tau}^n)^2}{2 \langle Q^{(n)}(\tau) \rangle^2} \sim \frac{v_{\Delta E}^2}{(\sigma_{\tau}^n)^2} \sim \frac{1}{\tau} \end{split}$$

Corrections trend L with time and size $v_{\Delta E}^2$ L^2 constant $v_{\Delta E}^2 \sim \sigma_{\Delta E}^2 \sim L^2$ σ_{τ}^2 static L dynamic L^2 $FR_{\tau\to\infty} + gaussianity: \frac{\langle Q_{\tau} \rangle}{\sigma^2} = -\frac{\beta_1 - \beta_2}{2} = constant \text{ with } L \text{ and } \tau$ $\sigma_{\tau}^2 \sim_{L,\tau} \langle Q_{\tau} \rangle \sim number of interface links \propto \begin{cases} \text{static} & L \\ \text{dynamic} & L^2 \end{cases}$ $\epsilon(\tau, L) \sim_{\tau \to \infty} \frac{v_{\Delta E}^2}{\sigma_{\tau}^2} \sim \begin{cases} \text{static} & \frac{L^2}{L\tau} = \frac{L}{\tau} \\ \text{dynamic} & \frac{L^2}{L^2\tau} = \frac{1}{\tau} \end{cases}$

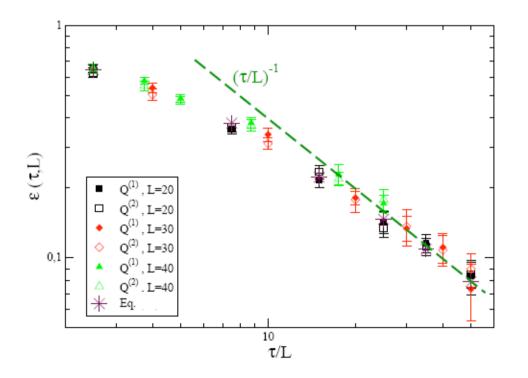
Scaling Ising above Tc



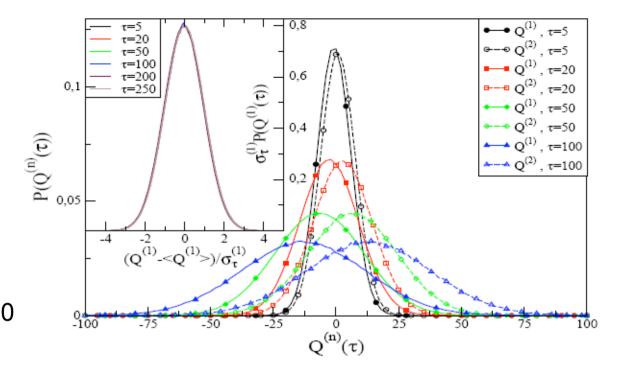
 $\epsilon(\tau, L) = 1 - slope$ $\epsilon(\tau, L) = f(\tau/L) \sim 1/x$

Kawasaki corrections and scaling

Above Tc: T_1 =2.9 and T_2 =3



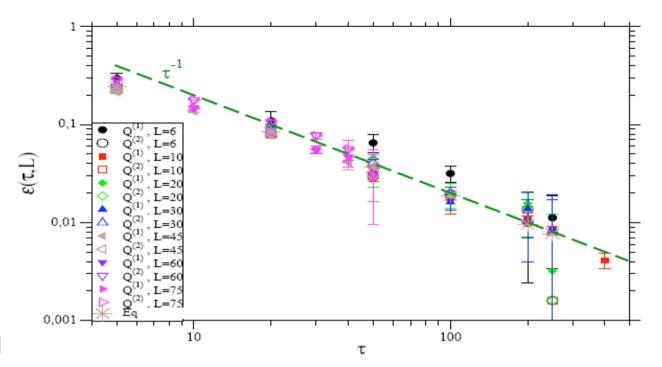
Dynamic model distributions



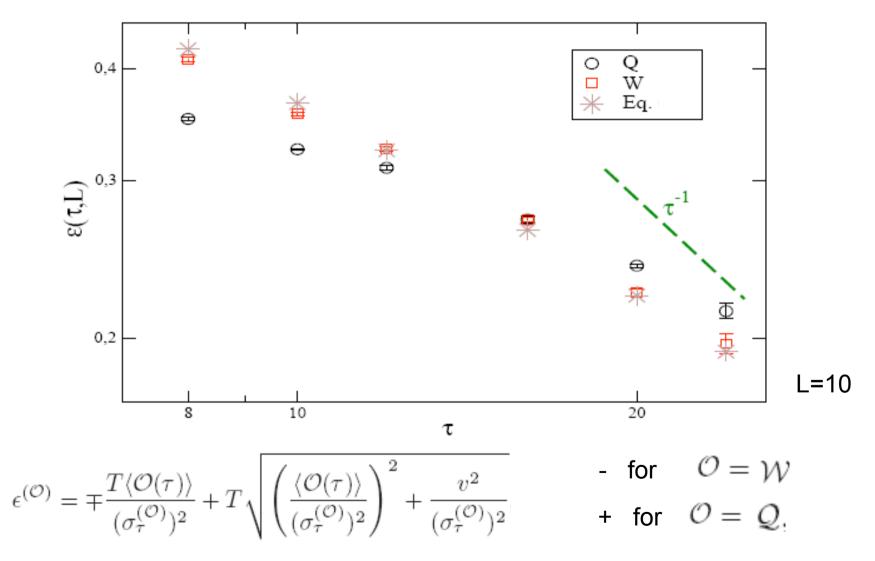
Above Tc: T_1 =3. and T_2 =3.1, L=10

Dynamic model corrections and scaling

Above Tc: T_1 =3. and T_2 =3.1



Work corrections and scaling in an Ising system with shear



Conclusions

The FR is realized also below T_c when the PDFs are not gaussian (in a way independent by the linear response theory)

Thank you!