
Lattice QCD simulations on GPUs

C. Bonati (Pisa), G. Cossu (KEK), M. D’Elia (Genova)

A. Di Giacomo (Pisa), P. Incardona (Genova)
.

SMFT 2011 - BARI September 22, 2011

1 – Lattice QCD: Computational Complexity

The main numerical task is the sampling of gauge field configur ations by dynamic Monte-Carlo:

• Stochastic variables: 3×3 unitary complex matrices Uµ(n) (gauge link variables)

associated to each elementary link of a (typically cubic) 4d space-time lattice of

spacing a. 4 Lx Ly Lz Lt matrixes on the whole How big our lattice?

a ≪ shortest scale ; Lsa ≫ largest scale =⇒ a < 0.1fm ; Ls ∼ O(102)

• Equilibrium distribution: DUe−SG[U] detM [U]

– SG (pure gauge action): local term taking into account gluon-gluon interactions

– detM [U] is the determinant of the fermion matrix: non-local term which takes

into account dynamical fermion contribution. M is a N × N sparse matrix

N = Lattice sites · N of Colors · Dirac components up to ∼ 108 − 109

The typical algorithm: Hybrid Monte Carlo

• Requires auxiliary variables: DUe−SG[U](det M [U])2 → DUDHDΦ†DΦ e−H

H = SG[U] − Φ†(M [U]M [U]†)−1Φ + 1
2

∑

n,µ TrH2
µ(n)

• Pseudofermion fields Φ and conjugate momenta Hµ updated by global heatbath

• Most time taken by Uµ and Hµ evolution (Molecular Dynamics eqs, dH/dt = 0)

Integration errors corrected by a Metropolis accept-rejec t step

Uµ(n, t + δt) = eiδtHµ(n,t)Uµ(n, t)

Hµ(n, t + δt) = Hµ(n, t) + δtḢµ(n, t)
U(t), H(t)

U’(t’), H’(t’)

• Heaviest task during trajectory: matrix inversion (MM †)−1Φ, needed for Ḣµ:

– A conjugate gradient algorithm is used typically

– The condition number of MM † rapidly increases at low quark masses, inver-

sion can take most of the total time

– Matrix inversion also needed to compute observables on the sampled gauge

configurations (e.g. quark propagators)

Lattice QCD is among the most computationally demanding res earch topics in theo-

retical physics.

By its continuous need for powerful computational resource s, it has often stimulated

the development of new hardware facilities for High Perform ance Computing.

partial list: the renowned series of APE machines, QCDOC, QPACE, ...

HOW MUCH DEMANDING?

Latest estimate, based on improved algorithms and discreti zations, of the numerical

cost for 2 Wilson fermions on a L3
s × 2Ls lattice:

L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tanta lo, JHEP 0702, 056 (2007)

0.05

(

Indep. Confs

100

)(

Ls

3 fm

)5 (

20MeV

m̄q

)(

0.1 fm

a

)6

TFlop · year

- Putting in reasonable numbers one easily reaches order of 10 − 100 Tflops · year.

- Numbers grow easily for specific requirements (heavy quark physics, exact chiral

symmetry via Ginsparg-Wilson fermions) going to the Petaflo p scale.

• Such large amount of computational power is, or will soon bec ome available in the

next future, to a few big groups in the world, thanks to large s cale parallel super-

computers, like BlueGene, built in the same spirit as for APE machines: network

of dedicated (multi)-processors with fast intercommunica tions.

Most tasks in a lattice simulation are ideally suited for a SI MD parallelization with

local communications.

• In this context the advent of Graphics Processing Units (GPU s), with their many-

core architectures, represents an ongoing breakthrough, l ike for other fields of

High Performance Computing:

– Present GPUs make medium size computational power (1-10 Te raflops) avail-

able at low cost to a large number of groups: that is essential for the develop-

ment of new ideas and for faster progress in the field.

– They have the potential for being efficient computing nodes in large scale su-

percomputing facilities.

• In the following I will illustrate the potential of GPUs for l attice QCD simulations,

based on our recent experience.

2 – A few words on GPUs

• GPUs are originally meant as graphic coprocessors

• They have recently developed to general purpose computatio nal facilities: due to

their many-core architecture they are perfectly suited for numerical tasks allowing

SIMD parallelization.

– Lots of math units

– Fast access to on-board memory

– Run the same program (thread) on many cores

• The advent of CUDA (Compute Unified Device Architecture) on N VIDIA GPUs, al-

lowing for an easy programming interface, has been a major bo ost in the last 2-3

years.

As a matter of fact, a GPU is still a coprocessor (accelerator)

The main (serial) program runs on the CPU (host), which somet imes launches parallel

kernels to be executed on the GPU (device), in order to accele rate specific portions

of the code.

Lattice QCD and GPUs

The first seminal paper on the implementation of lattice QCD o n GPUs:

Egri et al. hep-lat/0611022 “Lattice as a video game”

OpenGL was used as a programming language. Sustained perfor mance of ∼ 30

GFLOPs for the Wilson kernel (fermion matrix multiplicatio n) on an NVIDIA 8800 GTX.

The advent of the CUDA programming language has brought many other groups into

the GPUs play. This is only a partial list of contributions

• C.Rebbi et al. (LATTICE08) “Blasting through Lattice Calculations using CUDA” Wilson kernel 100

GFLOPs

• Kenji Ogawa (TWQCD) (Workshop GPU supercomputing 2009, Taipei) Wilson kernel 120 GFlops

• K. Ibrahim et al. “Fine-grained parallelization of LQCD kernel routine on GP U” Speedup 8.3x on

8800GTX (Wilson kernel)

• M. A. Clark et al., arXiv:0911.3191 “Solving Lattice QCD systems of equations using mixed preci -

sion solvers on GPUs” up to 150-200 Gflops for Wilson kernel on a GeForce GTX 280

M. A. Clark et al., arXiv:1011.0024 “Parallelizing the QUDA Library for Multi-GPU Calculation s in

Lattice QCD” up to 4 Tflops for Wilson kernel on a cluster of 32 NVIDIA GTX 285

• Plus other ∼ 10 unlisted contributions to the last LATTICE 2010 Conference in Sardinia.

3 – OUR IMPLEMENTATION (see arXiv:1106.5673)

We have ported to GPU a code simulating QCD with standard stag gered fermions

Specification of the NVIDIA cards used for our benchmarks

GPU Cores Bandwidth Gflops (peak) Gflops (peak) Device Memory

GB/s single double GB

Tesla C1060 240 102 933 78 4

Tesla C2050 448 144 1030 515 3

Remember that a GPU is made of many cores

having access to a global device memory with a

bandwidth O(100) GB/s. This is one first bottleneck

for problems with a low computations/data loading

ratio, such as lattice QCD (typical performances

are around 10%).

A more serious bottleneck is the connection of

the device memory to the host RAM, which goes

through a PCI express bus at 5 GB/s

OUR IMPLEMENTATION - general features

• Most lattice QCD applications use GPUs as accelerators for s pecific demanding

parts of the code, e.g. the matrix inversion or some expensiv e measurements.

• Our philosophy has been that of reducing as much as possible t he CPU/GPU data

exchange by putting most of the Monte-Carlo chain on the GPU.

• That has been done gradually (first we have put the inverter on the GPU, then grad-

ually every other piece). Asymptotically the CPU becomes no t more than a mere

controller of the GPU flow

The GPU is the computer ...

• Single precision floating point arithmetic always outperfo rms the double one (al-

though in the Fermi architecture such problem is strongly re duced).

Therefore we make use of double precision only when strictly necessary.

Sketch of our implementation

perform Metropolis accept/reject (CPU)

U(t), H(t)

U’(t’), H’(t’)

momenta and pseudofermions created on CPU
gauge field, momenta and pseudofermions uploaded on GPU
initial energy computed in double precision on GPU

compute final energy in double precision

download final configuration from GPU

whole evolution trajectory runs on GPU in single precision
negligible CPU/GPU communication at this stage

Everything is implemented by a homemade C code supplemented with CUDA kernels

OUR IMPLEMENTATION - fine structure

MΦ (Dirac Operator) Kernel

• Parallelization: each thread reconstructs MΦ on one site i.e.
∑

µ Uµ(n) × Φ(n + µ̂)

• Gauge and pseudofermion fields from CPU to threads:

– Only first two rows of each SU(3) gauge matrix are passed from host → device global (texture)

memory and from there to threads, to reduce memory exchange. Last row reconstructed during

computation.

– Reordering of gauge variables stored on global memory nece ssary to guarantee coalesced

memory access (contiguous threads read contiguous memory locations). Th is is strictly nec-

essary to avoid access latencies which disrupt performance

– pseudofermions to global memory with reordering as well

u11(1) u11(2) u11(3) · · · · · · u12(1) u12(2) u12(3) · · · · · ·

· · · u22(1) u22(2) u22(3) · · · · · · u23(1) u23(2) u23(3) · · ·

Figure 1: Gauge field storage model adopted to achieve coales ced memor access. All uij elements of

gauge matrixes are stored contiguously.

OUR IMPLEMENTATION - Inverter performance

Staggered Dirac operator kernel performance figures on a C10 60 card (single precision).

Lattice Bandwidth GB/s Gflops

4 × 163 56.84 ± 0.03 49.31 ± 0.02

32 × 323 64.091 ± 0.002 55.597 ± 0.002

4 × 483 69.94 ± 0.02 60.67 ± 0.02

Note that we reach sustained 60 GFLOPs (7% performance) and 7 0 GBytes/s (70 % bandwidth peak)):

no much room for further improvement. Similar numbers are ac hieved by other groups.

Main reason: the staggered fermion kernel needs more than 1 transferred b yte for each floating point

operation.

The situation is better by about a factor 2 for Wilson fermion s.

Global performance
We have tested our code in two different regimes: 2 light flavo rs (amq ≃ 0.01) and 2 heavy flavors

(amq = 1), corresponding to a different incidence of the Dirac kerne l performance.

C1060 time gains over Xeon X5560 and Opteron 2382 (both singl e core) and apeNEXT crate (256 nodes)

high mass low mass

spatial size 32 48 64 16 32 48

Opteron (single core) 65 75 75 40 50 85

Xeon (single core) 50 50 50 15 25 30

apeNEXT crate ∼3 ∼1

Same for NVIDIA C2050 (same code as for C1060, no specific C205 0 improvement).

high mass low mass

spatial size 32 48 64 16 32 48

Opteron (single core) 115 130 140 65 75 140

Xeon (single core) 85 85 100 30 40 50

apeNEXT crate ∼6 ∼2

Run times on different architectures. For Opteron and Xeon w e refer to single cores.

Why high mass more efficient? Pure gauge cost predominant wit h respect to dynamical fermions cost:

computations/data loading ratio much more favourable.

• pure gauge: mostly matrix-matrix multiplications. For SU(3) pass 2+2 rows (12 complex numbers)

to make 27 complex-complex multiplications.

• dynamical part: mostly matrix-vector multiplications. Fo r SU(3) pass 2 rows + 1 vector (9 complex

numbers) to make 9 complex-complex multiplications.

C1060 C2050

spatial size 32 48 64 32 48 64

gain factor over Xeon (single core) 80 90 120 135 145 210

Table 1: NVIDIA C1060 and C2050 time gains over CPU for the pur e gauge part sections of the code

(link evolution and pure gauge contribution to momenta evol ution in molecular dynamics).

4 – Production Runs

• We have started our GPU adventure mainly because we were lack ing adequate

computer resources for our physics program

– Nature of color confinement and of the deconfinement transit ion

– Phase diagram of QCD (high T, finite density, strong backgro und fields)

– Properties of deconfined matter

• Our main pre-GPU resources consisted of 4 apeNEXT crates: ab out 1 Teraflop, i.e.

two order of magnitudes less than competing groups in the wor ld.

Now we have gained one order of magnitude and we have already s tarted intensive

production runs since last summer.

• First production activities and results:

– Order of the Nf = 2 transition in the chiral limit

– QCD phase diagram at finite chemical potentials and in backg round magnetic fields (see e.g.

results in C. Bonati, G. Cossu, M. D’E., F. Sanfilippo “The Roberge-Weis s endpoint in Nf = 2

QCD,” Phys. Rev. D 83, 054505 (2011) [arXiv:1011.4515]

– Mid-long term project: implementation of exact chiral symmetry via overlap fermions

5 – Ongoing Developments

OPENCL implementation

0 10 20 30 40 50 60
0

50

100

150

200

0 10 20 30 40 50 60
0

50

100

150

200

0 10 20 30 40 50 60
0

50

100

150

200

0 10 20 30 40 50 60
0

50

100

150

200

ATI5870 GT430

C1060 S2050

Figure 2: Update time (in seconds) for a lattice L3

s × 4 (the spatial dimension Ls is on the abscissa)

for a theory with two fermions of mass m = 0.1 at coupling β = 5.59 and for various GPUs. Results

obtained with the OpenCL implementation are shown by empty s ymbols, while full symbols represents

the CUDA results.

Multi-GPU implementation

• Present simulations run on a single GPU. Optimal for our runn ing projects on

lattices as large as 483 × 4

• MultiGPU extension unavoidable for simulations at T = 0 and also at T 6= 0 when

approaching the continuum limit (finer lattices)

• We have tested a preliminary multiGPU extension of our code. The lattice is par-

titioned along a single direction. Multidirectional parti tioning and multiCPU (MPI)

extension in progress

lattice size 1 GPU 2 GPUs 4GPUs

4 × 643 239 134 95

4 × 963 800∗ 421∗ 249

Table 2: NVIDIA C1060 update time (in seconds) by using 1, 2 or 4 GPUs (CUDA implementation). The

numbers denoted by ∗ are extrapolated from simulations performed on smaller lat tice sizes because

of the impossibility to allocate the corresponding large la ttices in the device memory.

We hope to have more encouraging results in the next future!
THANK YOU!

