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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constant. This solution
holds provided the following dispersion relation holds

p2 = µ2

√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constant. This solution
holds provided the following dispersion relation holds

p2 = µ2

√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.

• Mass arises from the nonlinearities when λ is taken to be finite rather than
going to zero.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).
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• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫
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• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).

• All we need now is to find the exact form of the propagator G(x− x′) and we
have completely solved the classical theory for the scalar field in a strong
coupling limit.
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2tG0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2tG0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

G0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2tG0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

G0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.

• We are able to recover the full covariant propagator by boosting from the rest
reference frame obtaining finally

G(p) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

p2 −m2
n + iǫ

.

This shows that our solution given above indeed represents a strong coupling
expansion being meaningful for λ → ∞.
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry.
Anyhow, one can prove that the mapping persists but is just approximate in the
limit of a very large coupling.
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry.
Anyhow, one can prove that the mapping persists but is just approximate in the
limit of a very large coupling.

• This mapping would imply that we will have at our disposal a starting solution
to build a quantum field theory for a strongly coupled Yang-Mills field. This
solution has a mass gap already at a classical level!
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].
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• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

• The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. Then, a lot of
physics will be at our hands!
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

• The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. Then, a lot of
physics will be at our hands!

• The mapping theorem helps to solve this problem definitely.
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:

• MAPPING THEOREM: An extremum of the action

S =

∫

d4x

[

1

2
(∂φ)2 − λ

4
φ4

]

is also an extremum of the SU(N) Yang-Mills Lagrangian when one properly chooses Aa
µ with

some components being zero and all others being equal, and λ = Ng2, being g the coupling

constant of the Yang-Mills field, when only time dependence is retained. In the most general

case the following mapping holds

Aa
µ(x) = ηaµφ(x) +O(1/

√
Ng),

being ηaµ some constants properly chosen, that becomes exact for the Lorenz gauge.
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:

• MAPPING THEOREM: An extremum of the action

S =

∫

d4x

[

1

2
(∂φ)2 − λ

4
φ4

]

is also an extremum of the SU(N) Yang-Mills Lagrangian when one properly chooses Aa
µ with

some components being zero and all others being equal, and λ = Ng2, being g the coupling

constant of the Yang-Mills field, when only time dependence is retained. In the most general

case the following mapping holds

Aa
µ(x) = ηaµφ(x) +O(1/

√
Ng),

being ηaµ some constants properly chosen, that becomes exact for the Lorenz gauge.

• This theorem was proved in the following papers: M. Frasca, Phys. Lett. B670,
73-77 (2008) [0709.2042]; Mod. Phys. Lett. A 24, 2425-2432 (2009)
[0903.2357] after considering a criticism by Terry Tao. Tao agreed with the
latest proof.
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

∆ab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+ 1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(

Ng2

2

) 1
4
Λ
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

∆ab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0
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p2−m2

n+iǫ
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(

1√
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)
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and
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(

Ng2

2
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4
Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].
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Mapping theorem: Yang-Mills-Green function
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• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

• This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.
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2K(i)

(
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2

) 1
4
Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

• This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.

• All this classical analysis could be easier to work out on the lattice than the
corresponding quantum field theory and would already be an important step
beyond.
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Mapping theorem: A comparison
• Could the propagator we obtained for the classical Yang-Mills field be the right

one for the quantum field theory in the infrared limit?
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Mapping theorem: A comparison
• Could the propagator we obtained for the classical Yang-Mills field be the right

one for the quantum field theory in the infrared limit?

• In order to answer this question, we compared it with a solution obtained
numerically from Dyson-Schwinger equations [A. C. Aguilar and A. A. Natale
(2004) but see also A. C. Aguilar, D. Binosi, J. Papavassiliou,
arXiv:0802.1870v3 [hep-ph]].
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Mapping theorem: A comparison
• Could the propagator we obtained for the classical Yang-Mills field be the right

one for the quantum field theory in the infrared limit?

• In order to answer this question, we compared it with a solution obtained
numerically from Dyson-Schwinger equations [A. C. Aguilar and A. A. Natale
(2004) but see also A. C. Aguilar, D. Binosi, J. Papavassiliou,
arXiv:0802.1870v3 [hep-ph]].

• We obtained the following figure for a gluon mass of 746 (A&N, 2004) and 282
(AB&P, 2008) MeV (only fitting parameter):
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• The agreement is strikingly good but is worsening in the intermediate range of
energies. This should be expected by our approximation.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] = N

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] = N

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.

• We can rescale the space-time variable as x →
√
λx and rewrite the functional

as

Z[j] = N

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑

∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.
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Quantum field theory: Scalar field (1)
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∫

[dφ] exp

[

i

∫
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(

1
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(∂φ)2 − λ

4
φ4 + jφ

)]

.

• We can rescale the space-time variable as x →
√
λx and rewrite the functional

as

Z[j] = N

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑

∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.

• It is not difficult to see that the leading order correction can be computed
solving the classical equation

2φ0 + φ3
0 = j

that we already know how to manage. This is completely consistent with our
preceding formulation [M. Frasca (2006)] but now all is fully covariant. We are
just using our ability to solve the classical theory.

Analysis of strongly coupled quantum field theories – p. 11/19



Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = N exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = N exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = N exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!

• This functional describes a set of free particles with a mass spectrum

mn = (2n+ 1)
π

2K(i)

(

λ

2

)
1
4

µ

that are the poles of the propagator, the one of the classical theory.
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Quantum field theory: Scalar field (3)
• Accounting for next-to-leading order corrections one has:

Z[j] ≈ Z0[j]

∫

[dφ1]e
i 1
λ

∫

d4x
{

1
2 (∂φ1)

2
−

3
2µ

2λ[
∫

d4x′∆(x−x′)j(x′)]2φ2
1

}

being

∆(x− x′) = G(x− x′) + µ2λ

∫

d4x′′G(x− x′′)[G(x′′ − x′)]3.
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3
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1

}

being

∆(x− x′) = G(x− x′) + µ2λ

∫

d4x′′G(x− x′′)[G(x′′ − x′)]3.

• In the small momenta limit one has for the propagator

∆(p) ≈ G(p)

[

1− 0.086

4(2π)4λ
1
2

− 1

4(2π)4λ

(

0.337− 0.086
p2

µ2

)

+O

(

1

λ
3
2

)

]

.

Analysis of strongly coupled quantum field theories – p. 13/19



Quantum field theory: Scalar field (3)
• Accounting for next-to-leading order corrections one has:

Z[j] ≈ Z0[j]

∫

[dφ1]e
i 1
λ

∫

d4x
{

1
2 (∂φ1)

2
−

3
2µ

2λ[
∫

d4x′∆(x−x′)j(x′)]2φ2
1

}

being

∆(x− x′) = G(x− x′) + µ2λ

∫

d4x′′G(x− x′′)[G(x′′ − x′)]3.

• In the small momenta limit one has for the propagator

∆(p) ≈ G(p)

[

1− 0.086

4(2π)4λ
1
2

− 1

4(2π)4λ

(

0.337− 0.086
p2

µ2

)

+O

(

1

λ
3
2

)

]

.

• This gives a renormalization constant of the field as

Zφ =

√

1− 0.086

4(2π)4λ
1
2

+O
(

1

λ

)

≈ 1− 0.086

8(2π)4λ
1
2

+O
(

1

λ

)

.
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Quantum field theory: Scalar field (4)
• The theory presents contributions from a massless propagator. From the

generating functional with NLO correction one has

1

i2Z

δ2Z

δj(x2)δj(x1)

∣

∣

∣

∣

j=0

= ∆̃(x2 − x1) = ∆(x2 − x1)− 3µ2λ∆(x2 − x1)∆0(0)

being

∆0(x) =
1

µ4

∫

d4p

(2π)4
eip·x

1

p2 − iǫ
.
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Quantum field theory: Scalar field (4)
• The theory presents contributions from a massless propagator. From the

generating functional with NLO correction one has

1

i2Z

δ2Z

δj(x2)δj(x1)

∣

∣

∣

∣

j=0

= ∆̃(x2 − x1) = ∆(x2 − x1)− 3µ2λ∆(x2 − x1)∆0(0)

being

∆0(x) =
1

µ4

∫

d4p

(2π)4
eip·x

1

p2 − iǫ
.

• This integral needs to be regularized but we can accomplish this through the
ultraviolet cut-off µ. So, we put

∆0(0) =
1

32π2µ2
.
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1
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∫

d4p

(2π)4
eip·x

1

p2 − iǫ
.

• This integral needs to be regularized but we can accomplish this through the
ultraviolet cut-off µ. So, we put

∆0(0) =
1

32π2µ2
.

• This contribution can be computed exactly with a functional Taylor expansion of
the generating functional at all orders.
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Quantum field theory: Scalar field (4)
• The theory presents contributions from a massless propagator. From the

generating functional with NLO correction one has

1

i2Z

δ2Z

δj(x2)δj(x1)

∣

∣

∣

∣

j=0

= ∆̃(x2 − x1) = ∆(x2 − x1)− 3µ2λ∆(x2 − x1)∆0(0)

being

∆0(x) =
1

µ4

∫

d4p

(2π)4
eip·x

1

p2 − iǫ
.

• This integral needs to be regularized but we can accomplish this through the
ultraviolet cut-off µ. So, we put

∆0(0) =
1

32π2µ2
.

• This contribution can be computed exactly with a functional Taylor expansion of
the generating functional at all orders.

• This NLO contribution arises by a massless propagator. This is a zero mode
due to translational invariance and just gives an overall multiplicative constant
to the Gaussian generating functional.
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Running coupling (1)
• We can determine the beta function in the infrared limit from the propagator.

This beta function must be the same both for the scalar theory and the
Yang-Mills field for this limit due to the mapping theorem.
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Running coupling (1)
• We can determine the beta function in the infrared limit from the propagator.

This beta function must be the same both for the scalar theory and the
Yang-Mills field for this limit due to the mapping theorem.

• It is very easy to check that the following Callan-Symanzik equation holds in
this case:

µ
∂G(p)

∂µ
− 4λ

∂G(p)

∂λ
− γG(p) = 0

and we can identify β(λ) = 4λ and γ = 0. Using mapping theorem we can state
β(g) = 4Ng2 for a Yang-Mills theory.
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• This implies that the running coupling in the infrared limit for the Yang-Mills
theory increases like p4.
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This beta function must be the same both for the scalar theory and the
Yang-Mills field for this limit due to the mapping theorem.

• It is very easy to check that the following Callan-Symanzik equation holds in
this case:

µ
∂G(p)

∂µ
− 4λ

∂G(p)

∂λ
− γG(p) = 0

and we can identify β(λ) = 4λ and γ = 0. Using mapping theorem we can state
β(g) = 4Ng2 for a Yang-Mills theory.

• This implies that the running coupling in the infrared limit for the Yang-Mills
theory increases like p4.

• Such a conclusion would support a view of Yang-Mills vacuum as an instanton
liquid [T. Schäfer and E. V. Shuryak (1998), P. Boucaud et al. (2003)].
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Running coupling (1)
• We can determine the beta function in the infrared limit from the propagator.

This beta function must be the same both for the scalar theory and the
Yang-Mills field for this limit due to the mapping theorem.

• It is very easy to check that the following Callan-Symanzik equation holds in
this case:

µ
∂G(p)

∂µ
− 4λ

∂G(p)

∂λ
− γG(p) = 0

and we can identify β(λ) = 4λ and γ = 0. Using mapping theorem we can state
β(g) = 4Ng2 for a Yang-Mills theory.

• This implies that the running coupling in the infrared limit for the Yang-Mills
theory increases like p4.

• Such a conclusion would support a view of Yang-Mills vacuum as an instanton
liquid [T. Schäfer and E. V. Shuryak (1998), P. Boucaud et al. (2003)].

• Recent analysis on scalar field theory supports such a conclusion [I. Suslov
arXiv:0911.1149v1 [hep-th], D. Podolsky, arXiv:1003.3670v1 [hep-th]].
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Running coupling (2)
• We can easily get higher order corrections to the β function by noting that, in

the limit p → 0,

G(0) ≈ − 1.11

µ2λ
1
2

[

1− 0.086

4(2π)4λ
1
2

− 0.337

4(2π)4λ
+O

(

1

λ
3
2

)

]

.

and we recognize at the leading order the Nambu-Jona-Lasinio limit [Frasca
(2009)].
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Running coupling (2)
• We can easily get higher order corrections to the β function by noting that, in

the limit p → 0,

G(0) ≈ − 1.11

µ2λ
1
2

[

1− 0.086

4(2π)4λ
1
2

− 0.337

4(2π)4λ
+O

(

1

λ
3
2

)

]

.

and we recognize at the leading order the Nambu-Jona-Lasinio limit [Frasca
(2009)].

• The corresponding Callan-Symanzik equation gives to next-to-leading order:

β(λ) = 4λ− 0.344

(2π)4

√
λ+ . . . .

Analysis of strongly coupled quantum field theories – p. 16/19



Running coupling (2)
• We can easily get higher order corrections to the β function by noting that, in

the limit p → 0,

G(0) ≈ − 1.11

µ2λ
1
2

[

1− 0.086

4(2π)4λ
1
2

− 0.337

4(2π)4λ
+O

(

1

λ
3
2

)

]

.

and we recognize at the leading order the Nambu-Jona-Lasinio limit [Frasca
(2009)].

• The corresponding Callan-Symanzik equation gives to next-to-leading order:

β(λ) = 4λ− 0.344

(2π)4

√
λ+ . . . .

• Similarly, we get an anomalous dimension

γ =
0.344

(2π)4
√
λ
.

and we prove in this way that β(λ)/λ has an expansion in λ−1/2 in agreement
with Suslov (2011).
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Quantum field theory: Yang-Mills field (1)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem. We note the presence of the gap.
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• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem. We note the presence of the gap.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)
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• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem. We note the presence of the gap.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)

• and we note that, in this approximation, the ghost field just decouples and
becomes free and one finally has at the leading order

Z0[j]=N exp[ i2
∫

d4x′d4x′′jaµ(x′)Dab
µν(x

′
−x′′)jbν(x′′)].

This functional describes free massive glueballs that are the proper states in
the infrared limit. Yang-Mills theory is trivial in the limit of the coupling going to
infinity and we expect the running coupling to go to zero lowering energies.
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Quantum field theory: Yang-Mills field (2)
• Let us consider the following two-point function

Dab
µν(t− t′, 0) = 〈TAa

µ(t, 0)A
b
ν(t

′, 0)〉
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Quantum field theory: Yang-Mills field (2)
• Let us consider the following two-point function

Dab
µν(t− t′, 0) = 〈TAa

µ(t, 0)A
b
ν(t

′, 0)〉

• From the mapping theorem and the corresponding propagator for the scalar
theory it is not difficult to see that

Dab
µν(t− t′, 0) = ηaµη

b
ν

∞
∑

n=0

Bne
−imn(t−t′)

being ηaµ some constants.
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Quantum field theory: Yang-Mills field (2)
• Let us consider the following two-point function

Dab
µν(t− t′, 0) = 〈TAa

µ(t, 0)A
b
ν(t

′, 0)〉

• From the mapping theorem and the corresponding propagator for the scalar
theory it is not difficult to see that

Dab
µν(t− t′, 0) = ηaµη

b
ν

∞
∑

n=0

Bne
−imn(t−t′)

being ηaµ some constants.

• So, the spectrum of the theory is uncovered to be

mn = (2n+ 1)
π

2K(i)

√
σ

being
√
σ =

(

Ng2/2
)

1
4 Λ the string tension to be fixed experimentally.
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Quantum field theory: Yang-Mills field (2)
• Let us consider the following two-point function

Dab
µν(t− t′, 0) = 〈TAa

µ(t, 0)A
b
ν(t

′, 0)〉

• From the mapping theorem and the corresponding propagator for the scalar
theory it is not difficult to see that

Dab
µν(t− t′, 0) = ηaµη

b
ν

∞
∑

n=0

Bne
−imn(t−t′)

being ηaµ some constants.

• So, the spectrum of the theory is uncovered to be

mn = (2n+ 1)
π

2K(i)

√
σ

being
√
σ =

(

Ng2/2
)

1
4 Λ the string tension to be fixed experimentally.

• We see that, in the infrared limit, Yang-Mills theory displays a spectrum of free
massive particles with a superimposed spectrum of a harmonic oscillator (they
are structure-like).
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Conclusions
• We provided a strong coupling expansion both for classical and quantum field

theory of a massless quartic scalar field.
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be expected.
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large coupling.

• Agreement with numerical solutions to the Dyson-Schwinger equations is
strikingly good. Worsening is seen in the intermediate region where it should
be expected.

• Running coupling is seen to go to zero as a power of decreasing momenta.
Pure Yang-Mills theory is proved trivial in the infrared even if QCD is surely not.

• Higher order corrections were also provided obtaining an expansion in 1/λ
1
2 .
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Conclusions
• We provided a strong coupling expansion both for classical and quantum field

theory of a massless quartic scalar field.

• Using a mapping theorem, results obtained for the scalar field are
straightforwardly applied to the Yang-Mills field in the limit of an increasingly
large coupling.

• Agreement with numerical solutions to the Dyson-Schwinger equations is
strikingly good. Worsening is seen in the intermediate region where it should
be expected.

• Running coupling is seen to go to zero as a power of decreasing momenta.
Pure Yang-Mills theory is proved trivial in the infrared even if QCD is surely not.

• Higher order corrections were also provided obtaining an expansion in 1/λ
1
2 .

• The main conclusion is that computations for strongly coupled quantum field
theory can be done much in the same way as for a weak coupling.
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