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Introduction (I)

 The vacuum structure of lattice gauge theories can be understood 
probing it by an external background field          

 This can be done defining on the lattice a gauge invariant effective 
action               by using the Schrodinger Functional (SF)                     
[P. Cea, L. Cosmai, Phys. Rev. D60 (1999) 094506. [hep-lat/9903005]]

 The Euclidean SF in Yang-Mills theories without matter is defined by:  
                                                 

 NOTE: it is the propagation kernel for going from some field 
configuration         at time               to some other configuration          
at                       

 The lattice SF is given by

 S is the Wilson action modified to take in account the boundaries:

~Aext

¡(~Aext)

Z[Af ; Ai] = hAf je¡HTPjAii

Ai x4 = 0 Af

x4 = T

Z[Uf ; U i] =

Z
DUe¡S

U(x)x4=0 = U i; U(x)x4=T = Uf
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Introduction (II)

 We define the lattice effective action for a background field        :         
                                                                                                     

      

              turns out to be invariant under lattice gauge transformation of 
the external link          

 Since in this definition             , we have periodic condition in the time 
direction and the lattice action is now the familiar Wilson action

 It is possible to show that:                                          , [when             ]   
             is the vacuum energy in presence of the external background

 Therefore              is the lattice gauge invariant effective action for the 
background field             

 In other words to study a theory with an external background field we 
have to simulate on the lattice the ”standard” action (without any 
external field) but introducing proper constraints

~Aext

¡(~Aext) = ¡ 1

T
ln

Ã
~Z[U ext]
~Z[0]

!
; where ~Z[U ext] = Z[U ext; U ext]

¡(~Aext)

U ext

Uf = U i

E0( ~A
ext)

¡(~Aext) ! E0( ~A
ext)¡E0(~0) T ! 1

¡(~Aext)
~Aext
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U(1) in a uniform external magnetic field

 We impose spatial and temporal boundary conditions

 We constrain the spatial lattice links belonging to a fixed time slice to: 
                    and                                                             (              )   

 The same constraints are imposed at the spatial boundaries of the 
other time slices (fluctuations over the background field vanish at infinity)

 The temporal links are not constrained because this is coeherent with the 
definition of the correct thermal partition functional

 Because the lattice has the topology of a torus, the magnetic field turns out 
to be quantized:

 A different approach to introduce the external magnetic field:             
[J.Alexandre, K.Farakos, S.J.Hands, G.Koutsoumbas, S.E.Morrison,  
Phys.Rev. D64 (2001) 034502 [hep-lat/0101011]]                                        

U ext
1 (~x) = 1 U ext

2 (~x) = cos (gHx1) + i sin (gHx1) x4 = 0

a2gH =
2¼

Lt
next ; (next = 0; 1; : : : )
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QED in 3d

 The continuum Lagrangian density describing QED3 is given in 
Minkowski metric by:   

       (                     ) are 4-component spinors

 QED3 is a super-renormalizable theory, dim[e]=+1/2

 A convenient representation for the       is the reducible 4×4 
representation of the Dirac algebra in three dimensions:                       
                                ,                                    ,                                      

 We define also two more matrices  anticommuting with them:

                          ,                               

L = ¡1

4
F 2
¹º + ÃiiD¹°

¹Ãi ¡m0ÃiÃi

Ãi i = 1; : : : ; Nf

°¹

°0 =

µ
¾3 0
0 ¡¾3

¶
°1 =

µ
i¾1 0
0 ¡i¾1

¶
°2 =

µ
i¾2 0
0 ¡i¾2

¶

°3 = i

µ
0 1
1 0

¶
°5 = i

µ
0 1
¡1 0

¶
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QED in 3d

 The massless theory will therefore be invariant under the chiral 
transformations:

 If we write the 4-component spinor as 2-component spinors:

 Then the mass term becomes: 

 Since in three dimensions the parity transformation reads:

 Then            is parity conserving

Ã =

µ
Ã1
Ã2

¶

mÃÃ = mÃy1¾3Ã1 ¡mÃy2¾3Ã2

Ã1(x0; x1; x2) ! ¾1Ã2(x0;¡x1; x2)

Ã2(x0; x1; x2) ! ¾1Ã1(x0;¡x1; x2)

mÃÃ

Ã ! ei®°
3

Ã ; Ã ! ei¯°
5

Ã
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Our model

 We want to study QED3 with               flavours of 4-component 
fermions using the staggered fermion approach 

 We need to simulate N=1 staggered fermions fields          with the 
Euclidean action:

  The fermion matrix is given by (                                     ): 

  We choose the compact formulation of QED:

                  

 The introduction of the fermions in the theory does not change 
anything about the way we introduce the external field 

Nf = 2

Â; ¹Â

S = SG +
NX

i=1

X

n;k

Âi(n)Mn;kÂi(k)

´º(n) = (¡1)n1+:::+nº¡1

SG[U ] = ¯
X

n;¹<º

·
1¡ 1

2

¡
U¹º(n) + U y¹º(n)

¢¸

~Aext

¯ = 1=(e2a)

Mn;k[U ] =
X

º=1;2;3

´º(n)

2

©
[Uº(n)]±k;n+º̂ ¡ [U yº (k)]±k;n¡º̂

ª
+m ±n;k
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Dynamical symmetry breaking

 It is a general result that a constant magnetic field leads to the 
generation of a fermion dynamical mass: ”magnetic catalysis”              
[P.Cea, L.Tedesco, J.Phys.G {26} (2000)  411 [hep-th/9909029]]        
[V.P.Gusynin, V.A.Miransky, I.A.Shovkovy, Phys.Rev.Lett. {73} 
(1994)  3499-3502 [hep-ph/9405262]]

  It is possible to evaluate the chiral condensate in the one-loop 
approximation [P.Cea, [arXiv:1101.5703 [cond-mat.mes-hall]]]:

 After regularization of the integral and for                                    

hªªi = ¡ 2Nf jmjc2 }ceH
2¼

1X

n=1

1p
2n}ceH +m2c4

¢0 = mc2

) hªªi
eH
2¼

;
mq
eH
2¼

[cgs]

¢0p
H(T )

¿
q
2}v2F e=c ¼ 420K £ kB

hªªi ' ¡ ~ceH
2¼

Nf
³(12 )p

¼

¢0q
}ceH
2¼
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Numerical results (I)

 The choice of     is based on [R.Fiore, P.Giudice, D.Giuliano, 
D.Marmottini, A.Papa, P.Sodano, Phys.Rev.{D72 } (2005) 094508]

¯

hª
ª
i

¯

●Only one value: 2.0 
●In progress: 2.5
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Numerical results (II)

 Simulations with   =2.0, L=12,16,24; next=1,2,3; m=0.005-0.05;

 

 Scaling law for                 

 In the chiral limit (            ):



x . 0:04

x =
m0p
eH=2¼

hªªi
eH
2¼

= a0 + a1 x

x ! 0

a1 = 11:20 § 0:48

a0 = 0:07668 § 0:00930

hªªi =
~ceH
2¼

(0:07668 § 0:00930)

¯
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Graphene, introduction

 Graphene is a honeycomb (hexagonal) lattice made of carbon atoms: 

● It has one valence electron 
per atomic site 

● It is a semi-metal or zero-
gap semiconductor

●                                            

● a0 ¼ 1:42£ 10¡8cm

vF ¼ 1:0£ 108cm=s
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Graphene, real space lattice

 The theory of graphene was first explored by                                        
[P.R.Wallace,"The Band Theory of Graphite", Phys.Rev.71 (9) (1947) 622] 

● The unit cell is a rhombus and contains two atoms 
A and B (yellow shadow)
● The Bravais lattice is triangular

●The hexagonal lattice is made of two 
interpenetrating triangular Bravais lattices
●The basis vectors are:

●

●         

A

B

~a1;~a2

~A(n1; n2) = n1~a1 + n2~a2

~B(m1;m2) = m1~a1 +m2~a2 + ~±2

[N.M.R.Peres,Rev.Mod.Phys.82:2673-2700,2010]
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Graphene, reciprocal lattice

 The Brillouin zone is an hexagon

 The reciprocal lattice basis vectors are: 

 There are two special, non-equivalent (i.e. not connected by a 
reciprocal lattice vector) corners of the BZ, termed K and K'

~K1; ~K2; [ ~Ki~aj = 2¼±ij ]

[N.M.R.Peres,Rev.Mod.Phys.82:2673-2700,2010]
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Tight-binding model (I)

 If we conside only the nearest-neighbor interaction between electrons 
 

 The hopping parameter (related to the probability amplitude for 
electron transfer between neighboring sites) is   

 Diagonalising H, we get the energy eigenvalues:

 There are two bands, one at negative energies (hole/valence band) 
and the other at positive ones (a particle/conduction band)

               , at the corners of the BZ (where also the Fermi energy lies: 
a finite number of Fermi points is quite unusual!)

H = ¡t
X

~A;i

h
U y( ~A)V ( ~A+ ~®i) + V y( ~A+ ~®i)U( ~A)

i

t ¼ 2:7eV

E(k1; k2) = §t

q
1 + 4 cos (

p
3k1a0=2) cos (k2a0=2) + 4 cos2 (k2a0=2)

E(~k) ! 0
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Tight-binding model (II)

 In the continuum limit,            (low energy) only the electron states 
near K and K' partecipate in the dynamics and the energy dispersion 
relation is linear:                          , where  

 Correspondly,                   : a field theory of 2 massless Dirac spinors 
in 2 dimensions [G.W.Semenoff, Phys.Rev.Lett. 53 (1984) (26) 5449]

a0 ! 0

E(~k) = §vF}j~kj vF = 3ta0=2

H = vF~¾~k

➢ electrons and holes are 
called Dirac fermions

➢the six corners of the BZ 
are called the Dirac points

➢”valley” degeneracy in the 
spectrum because K and K'
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Graphene in a magnetic field

 If H is applied perpendicularly to a conventional 2d electron gas, we 
have the Landau levels:                              , where                       

 Every LL has a degeneracy density: 

 In graphene, because the relativistic massless dispersion relation, we

have non-equidistant Landau levels:

Hall Effect (HE):

En = } !c(n+ 1=2)

● Conductance:                 ,        filling factor             
    

● Integer QHE:

● In Graphene, anomalous QHE (because            ): 

(the factor 4 because spin and valley degeneracy)

¾xy =
e2

h
º º

º = 0;§1;§2; : : :

º = §4

µ
N +

1

2

¶
= §2;§6;§10; : : :

E = 0

!c = eH=mc

g = eH=hc

En = sign(n)

r
2}eHjnjv

2
F

c
; n = 0;§1; : : :
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A new discovery (I)

 In a very strong magnetic field (up to 45T) a new set of QH states at 
filling                            [Y.Zhang et al, Phys.Rev.Lett. {96}, 136806 (2006)]

 This implies that the 4-fold degeneracy is now lifted: 

             is therefore related to the valley symmetry breaking and 
consequently to the generation of a GAP 

º = 0;§1;§4

º = 0;§4

 n=0 degeneracy: fully lifted
 n=1 degeneracy: partially lifted 

 What is the ORIGIN of the lifting of these 
degeneracies ?

 (Zeeman) spin splitting
 Valley symmetry breaking and GAP formation

                  it is belived that  they are spin states  

º = §1

¢0(H)
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A new discovery (II)

[Z.Jiang et al, Phys.Rev.Lett. {99}, 106802 (2007)] 

 It is belived that the generation of the gap is driven by the electron-
electron interaction (in a magnetic field) [V.N.Kotov et al, arXiv:1012.3484]

 In this picture: 

 [P.Cea, [arXiv:1101.5703 [cond-mat.mes-hall]]] shows that, in the graphene, a 
dynamical gap is energetically convenient and                                

 Moreover, the proposal is that the GAP is generated by spontaneous 
symmetry breaking

 We fitted these data by (using                           ):

 We get: 

¢E(º = 1) = 2
³
¢0(H)¡ g

2
¹BH

´¢0(H) /
p
H

¢0(H) = (13:57§ 0:28)K £ kB
p
H

¢0(H) ¼ e2

²

r
eH

}c
¼ 163K £ kB

p
H

¢0(H) /
p
H
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Our approach (I)

 We think that it is possible to use our QED3 result to estimate 
correctly the value of the GAP

 Usually QED3 is not used in the graphene context because:

 fermions 2d, photons 3d (3d coulomb interaction)

 relativistic invariance is broken (at m=0: fermions v
F
, photons c)

 How we circunvent these problems:

 We think that the Coulomb interaction can be neglected for our 
purpose: in fact in 2d we would have:                         but, at 
posteriori, we see that                  : so in such a way it is not 
important that we consider 2d or 3d

 We get the relevant result with the substitution: c ! v2F =c

¢0 / e2 ln(H)

¢0 /
p
H
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Our approach (II)

  Combining:

                                                  and 

 We get: 

 To restore the correct asymmetry between fermions and photons:

 Finally: 

compare with the experimental value: 

 Is it good?  1) 1-loop formula; 2) small GAP hypothesis; 3) v
F
 error

¢0(H) = (13:57§ 0:28)K £ kB
p
H

hªªi ' ¡ ~ceH
2¼

Nf
³(12 )p

¼

¢0q
}ceH
2¼

hªªi =
~ceH
2¼

(0:07668 § 0:00930)

¢0 ' ¡
p
¼

Nf³(
1
2
)

s
}v

2
F

c
eH

2¼
(0:07668 § 0:00930)

¢0 ' ¡
p
¼

Nf³(
1
2)

r
}ceH
2¼

(0:07668 § 0:00930) :

¢0(H) = (5:52 § 0:67) K£ kB
p

H(T ) ¿ 420 K£ kB
p

H(T )
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Conclusion

 We have verified that in QED3, in the chiral limit, with a magnetic 
background, there is a dynamical symmetry breaking and:

 We applied our numerical result to determine the value of the GAP 
that explains the observed new quantum Hall states for n=0 Landau 
level under very strong magnetic field:

hªªi =
~ceH
2¼

(0:07668 § 0:00930)

¢0(H) = (5:52 § 0:67) K£ kB
p

H(T )


