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m The free energy associated with the bare Polyakov loop is divergent in the
continuum: renormalization required [Dotsenko and Vergeles, 1980]
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Bare Polyakov loops

Bare Polyakov loopsin the fundamental representation
SU(3), Wilson action
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Why large N?

m Atfixed A = g?N and Ny, expansions in powers of 1/N give non-trivial insight onto
some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar,
1998]
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m Atfixed A = g?N and Ny, expansions in powers of 1/N give non-trivial insight onto
some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar,
1998]

m Feynmann diagrams; Planar diagram dominance

=X~

m Formal connection to closed string theory; Topological expansions of amplitude <+
Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri
and Oz, 1999] .
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Why large N?

m Gauge/string correspondence conjecture; technically crucial for computations
[Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used
to study the strongly interacting plasma [Gubser and Karch, 2009]
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Why large N?

m Gauge/string correspondence conjecture; technically crucial for computations
[Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used
to study the strongly interacting plasma [Gubser and Karch, 2009]

m Analytical solutions in D = 1 4 1 dimensions [Gross and Witten, 1980]
m Volume reduction [Eguchi and Kawai, 1982]

m Implications for the phase diagram structure at large densities [McLerran and
Pisarski, 2007]

m Relevant for the Yang-Mills equation of state, both in D = 3 + 1 [Lucini, Teper
and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and
Gupta, 2010] and in D = 2 + 1 dimensions [Caselle et al., 2011]

m Does this hold for other thermal quantities, too? How about the renormalized

Polyakov loop? [Burnier, Laine and Vepsaldinen, 2009; Brambilla et al., 2010;
Noronha, 2010]
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Why higher representations?

m Tests of Casimir scaling [Déring et al., 2007; Hiibner and Pica, 2007; Del
Debbio, Panagopoulos and Vicari, 2003]
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Why higher representations?

m Tests of Casimir scaling [Déring et al., 2007; Hiibner and Pica, 2007; Del
Debbio, Panagopoulos and Vicari, 2003]

m Equivalence of different irreducible representations in the large-N limit
m Effective (matrix) models for the deconfinement region? [Pisarski, 2002]

m Also interesting for ETC models: dynamical fermions in different representations,
see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews
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Polyakov loop renormalization methods

| Using the QQ potential at zero temperature [Kaczmarek, Karsch, Petreczky and
Zantow, 2002; Hiibner and Pica, 2008]

Lren = ZMt Lpare, Z =exp(Yoa/2)
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Zantow, 2002; Hiibner and Pica, 2008]

Lren = ZMt Lpare, Z =exp(Yoa/2)

B At fixed temperature T, remove the N;-dependent contributions to the bare
Polyakov loop free energy [Dumitru et al., 2003]:

Fbare — NthiV + Fren + N;‘ Flat + ...

(however, note that gg is notfixed . ..)

Iterative determination of the renormalization term, from simulations at two
different bare couplings [Gupta, Hiibner and Kaczmarek, 2008; Creutz, 1981]

A Fixed scale renormalization [Gavai, 2010]
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m Simulations with the Wilson action [Wilson, 1974]:
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m Simulations with the Wilson action [Wilson, 1974]:

Z > {1 - 7Re Ul ‘,,(x)}

X p<v

® ...and with the tree-level improved action [Curci, Menotti and Paffuti, 1983;
Liischer and Weisz, 1985]:

ZZ{1——Retr[3UL71( )—3ul3( )—fuﬂfb( )]}

X pu<v

m Simulation algorithm based on a (standard) 1 + 3 combination of
heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and
overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2)
subgroups [Cabibbo and Marinari, 1982]
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Setting the scale

m For the Wilson action: high-precision determinations available in the
literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and
Wenger, 2004]
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m Comparison with a scale setting from the determination of the critical .
temperature [Caselle, Panero and Piemonte, 2011]
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Irreducible representations

m For SU(2), the recursive formula for obtaining characters of any irreducible
representation:
trp1g = trpg trg — trp_1g  With: trpg = 1
m For SU(3), the characters of higher representations are obtained using the Young
calculus and the relation between the traces in the fundamental and
anti-fundamental irreducible representation:

29 — (6] = 7 = (15s9)"

m For SU(N > 3) we combine the character relations derived from Young calculus
with the Weyl formula [Weyl, 1960; ltzykson and Nauenberg, 1966]:

det F(X)
trxg = —
det F(0)
where Fiy(X) = exp[i (N — k) oy] and e/1, gi@2, ... gl“N are the eigenvalues of

g in the fundamental representation %
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Scale determination from the zero-temperature potential

Wilson loop ratios (5 levels of smearing, k = 0.3)
SU(4), 16" lattice, tree-level improved action, B =8
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Scale determination from the zero-temperature potential

Zero-temperature potential (5 levels of smearing, k = 0.3)
SU(4), 16" lattice, tree-level improved action, B =8
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Scale determination from the zero-temperature potential

Zero-temperature string tension from smeared Wilson loops

SU(4), tree-level improved action
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Scale determination from the zero-temperature potential

1/ r term from smeared Wilson loops
SU(4), tree-level improved action
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Scale determination from the zero-temperature potential

Renormalization factor from smeared Wilson loops

SU(4), tree-level improved action
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Scale determination from the zero-temperature potential

Casimir scaling of bare Polyakov loops

SU(4), tree-level improved action, N, =5
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Scale determination from the zero-temperature potential

Renormalized Polyakov loop

SU(4), tree-level improved action, fundamental representation
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