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Brief Summary

1. We will mathematically define the reflexive
systems.

2. We will apply this definition to the financial
market.

3. We will propose an explicit reflexive model and we
will describe its intermittent behavior

4. We will compare the model behavior with some
stylized properties of actual financial market.

5. We will discuss the reason of the intermittent
behavior and we describe a possible alternative
“route towards intermittency”.



Reflexive models: a mathematical
definition

The cognitive function y = f(x) → the observer tries
to model the behavior of the system and, depending
on its ideas, chooses a cognitive function f(x) of the
system variable x. The observer is then driven in
his/her choices by the value of the variable y.

The manipulative function Φ(y) → describes the effect
of the observer opinion and choices (depending on the
value of y) on the behavior of the system.

Completeley reflexive model:
{

y(t) = f(x(t))
x(t+ 1) = Φ(y(t))

(1)

Mixed model with intrinsic dynamics (not depending
on the observer):

{

y(t) = f(x(t))
x(t+ 1) = g(x(t)) + Φ(y(t), x(t)).

(2)

If Φ(y(t), x(t)) = 0 this system reduces to a simple
dynamical system (also stochastic) driven by the
function g(x), without reflexive effect.



Application to financial market

Cognitive function y = f(x) → all statistical analysis
techniques that the agents use to predict the future
behavior of the market.

Manipulative function Φ(y, x) → the effect of agents
opinion on the behavior of the price.

The main idea is not new (Soros, Kalecki and Minsky)
but it is typically mathematically treated in the context
of multi-agent models. In particular minority game
models show a practically vanishing manipulative
function.

We assume that the minority game is not the correct
paradigm of financial market: during trends and
bubbles, for example, almost all agents earn something
and this is in contrast with minority game

⇓

In some sense minority game do not treat the case
where money supply and/or average values of
investment goods increase.



An explicit model: the linear reflexive

model (LRM)∗

What is the best linear model fitting the last N
observations r(t− τ), with 0 ≤ τ ≤ N − 1?

r̃(t+ 1) = f(t)r(t), (3)

where r(t) is the logarithmic return of price, i.e.
r(t) ≡ log [S(t)/S(t− 1)],

Minimizing the error of the model χ2

χ2 =

N−1∑

τ=0

[r̃(t− τ) − r(t− τ)]2 =

N−1∑

τ=0

[f(t)r(t− τ − 1)− r(t− τ)]2 ,

(4)

we obtain:

f(t) =

N−1∑

τ=0

r(t− τ)r(t− τ − 1)

N−1∑

τ=0

r(t− τ − 1)2

. (5)

Thus the best choice for f(t) is similar to the
normalized correlation of the previous observations.

∗L. Palatella, A reflexive toy model for financial market, Physica A
389, 315-322 (2010)



Still on the model

If we want f(t) to exactly fulfill the condition −1 ≤ f(t) ≤ +1 we
choose:

f(t) =

N−2∑

τ=0

r(t− τ)r(t− τ − 1)

(
N−2∑

τ=0

r(t− τ)2

)1/2 (
N−1∑

τ=1

r(t− τ)2

)1/2
=

r(t) · r(t− 1)

‖r(t)‖‖r(t− 1)‖

(6)

We make the simplifying hypothesis that N is identical for all the
market operators.

We build up a model where the next logarithmic return price is a

weighted average of the previous return and of a random

component

r(t+ 1) = r0(1 − φ(f(t)) + σ0)η(t)
︸ ︷︷ ︸

stochastic term

+φ(f(t))f(t)r(t)
︸ ︷︷ ︸

reflexive term

(7)

Central hypothesis: the ”weight” φ(f(t)) of the factorized
manipulative function Φ(y, x) = φ(f(t))G(x(t)): we suppose that
φ(f(t)) = |f(t)|, this means that there are conditions where

• f(t) → ±1

• all agents believe in the linear model

• the influence of all agents on the price makes the linear
model to work!

We only let the possibility of a residual stochastic term
parametrized by σ0 due to agents and to the economical reasons
that are not related to the reflexive effect.



The complete model equations







f(t) =

N−2∑

τ=0

r(t−τ)r(t−τ−1)

(
N−2∑

τ=0

r(t−τ)2

)1/2(
N−1∑

τ=1

r(t−τ)2

)1/2 φ(f(t)) = |f(t)|

r(t+ 1) = r0(1 − φ(f(t)) + σ0){η(t) + γ[xc(t) − x(t)]}
+φ(f(t))f(t)r(t)

x(t+ 1) = x(t) + r(t)
xc(t+ 1) = xc(t) + r0(1 + σ0)η(t),

(8)

the stochastic term η(t) is an i.i.d. Gaussian variable
with 〈η〉 = 0 and 〈η(t)η(t′)〉 = δt,t′.
x(t) = logS(t);xc(t) = logSc(t)

The last ingredient: the dynamics of the correct price

(i.e. without reflexive effect) and the reversion to its
value. The dynamics of xc(t) is obtained putting
φ(f(t)) = 0. The reversion is parametrized by γ ≪ 1.

xc(t+ 1) = xc(t) + r0(1 + σ0)η(t),

Values of parameters chosen: γ ∈ [0,10−4],
N = 3,5,6,7,12,15. r0 depends on the time scale
used, 0.01 < σ0 < 0.1.



The behavior of the model: equilibrium
points

Let us start with σ0 = 0. The fixed point equation:

f(t+ 1) = f(t)∀t⇒ φ(f(t)) = 1, f(t) = ±1.

In this case, for arbitrary values of r̄, we have two
equilibrium points for f(t):

r(t+ 1) = r(t) = r̄, f(t) = 1 (trend)
r(t+ 1) = −r(t) = −r̄, f(t) = −1 (lateral movement).

The first point corresponds to a trend state where the
return of the price shows a persistent trend of increase
(if r(t) > 0 ) or decrease (if r(t) < 0 ).

The second point corresponds to what technical
analysts call lateral movement, where the price goes
up and down without significant displacement from a
reference level.

If σ0 6= 0, these equilibrium points become unstable
and the model shows an intermittent behavior.



The behavior of the model: intermittency
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The function f(t) oscillates in an intermittent way
between the values ±1

During each ”laminar zone” the value of the return
r(t) slowly changes.

The “diffusion” of r̄ is due to the fact that going
slowly (with respect to N) from r̄ → λr̄ the value of
f(t) = ±1 is not affected.

The laminar zone becomes unstable when |r(t)| → 0



The behavior of the model: boom-bust
cycle
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We first observe a laminar zone with f(t) = 1 and
r(t) > 0 leading to a boom.

At the end of the boom (not necessarily due to the
reverting force γ) we observe a return to the ”right”
price that induces itself a reflexive decay with f(t) = 1
but r(t) < 0.



The behavior of the model: waiting time
statistics in f(t) = ±1
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We numerically compute the waiting time statistics in
the two states f(t) = ±1, ψ±(t).

We observe a clear asymptotic power law tail behavior.

Figures show results for N = 3,5,7,15 (from top to
bottom) and σ0 = 0.05

The fit gives for the exponent of the tail
µ = 2.63,2.28,2.27,2.15, respectively.

There is a large interval of values for N and σ0 where
2.0 ≤ µ ≤ 2.5



Comments on the model: connection
with real financial market time series

There are several points in common between this
model behavior and some properties of real market
dynamics

1. Observed over a long time interval the r(t) series
is uncorrelated because there are the same number
of situations where r(t+ 1) is approximatively
equal to ±r(t). At the same time there are long
periods of trends and of ”lateral movement” on a
shorter time interval (but still longer than N).

2. The reflexive effects can lead the price outside of

equilibrium very far from the correct price value.

3. The diffusion generated by the time series r(t) has
fat tails.

4. The exponent of the power law tail µ is in
agreement with the long time scaling observed in
a previous work on real time financial time series
(US$-DM futures and DJIA, µ ≃ 2.2) using
diffusion entropy technique †

†L. Palatella, J. Perelló, M. Montero, J. Masoliver, Activity au-
tocorrelation in financial market,Eur. Phys. J. B 38, 671-677
(2004).



Conclusion and discussion: from toy- to
real-model

Several steps are needed before using this model
directly on real market dynamics:

- Parameter estimation: we need to calibrate the
model to obtain the values of σ0 and N and to
account for the presence of different N-agents.

- Probably we need to eliminate perfect symmetry,
increasing the reflexive effect during the decreasing
trends (like leverage effect in GARCH-like models)

- After parameter estimation one could perform
risk-neutral evaluation for option pricing using the
linear reflexive model and compare with BS results.

For pure mathematicians and for people who are not
interested to economical and financial applications:

• We show that a white noise random system with
an observer that tries to model the system
dynamics and that at the same time can affect it
may lead to an intermittent behavior.

• We propose an alternative route to power law tail
intermittency different from the standard
Manneville map. In LRM intermittency is due to
the existence of a ”line” of indifferent equilibrium
points (from r(t) = r̄ to r(t) = λr̄).



An alternative route towards power law
tail intermittency

The LRM model, also in the simplified version with γ = 0, leads
to power law tail distribution of permanence times with
asymptotic power law index µ ≃ 2.

This value is important for different reasons and for various topics
like earthquakes, financial time series, DNA sequences, heartbeat,
etc.

Why does it happen in the LRM?

We show ‡ that the LRM in the laminar zones follows the
approximated dynamics

dx = −
α

x
dt+ σ0dW (t), x(0) = x0

where dW (t) are the increments of a Wiener process. The system
enters in the laminar zone with a value of |r(t)| ≃ 1 and can exit
only when it comes back to the origin (First Passage Time
problem).

We analitically prove that the FPTs of this simplified model are
distributed according to a probability density function ψ(t) that
asymptotically behaves like

ψ(t) ≃ t−µ, µ = 3/2 + β/2 as t→ +∞. (9)

where β ≡ 2α/σ0. Notice that if β = 0 we have µ = 3/2. α is
obtained numerically but it is proportional to σ0 thus we prove
that the value of µ is robust under additive noise disturbance.

‡L. Palatella, Intermittency in an invariant deterministic dynamical

system perturbed by non-invariant noise, submitted to Physical
Review
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