Direction dependent mechanical unfolding and Green Fluorescent Protein as a force sensor

Alessandro Pelizzola

Physics Department Politecnico di Torino

Bari, Sep 21, 2011

Single molecule manipulation: Atomic Force Microscopy

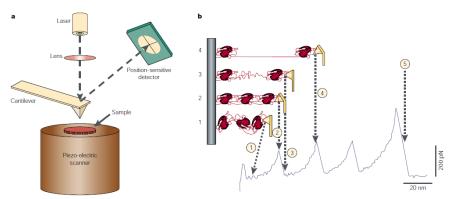
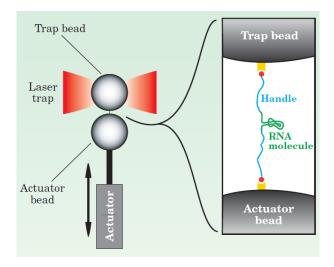
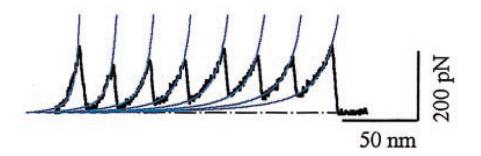



Figure 1 | Applications of the scanning force microscope (SFM). a | The principal SFM components. Laser light is focused onto the back of a cantilever that ends with a nanometre-scale tip. The reflection and corresponding position of the tip is detected by a position-sensitive photodode. A piezo-electric scanner moves the sample in all directions, enabling the tip to scan topography or to extend molecules attached to the surface. b | Diagrams and force curves showing the mechanical unfolding of repeating immunoglobulin-like domains ^{6,6}. As the distance between the surface and tip increases (from state 1 to state 2), the molecule extends and generates a restoring force that bends the cantilever. When a domain unfolds (state 3), the free length of the protein increases, relaxing the force on the cantilever returned in a cancile versus of the unfolded molecule before detachment from the SFM tip (state 5).

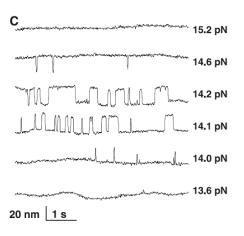
Single molecule manipulation: Laser Optical Tweezers

Single molecule manipulation: protocols


Constant velocity:

- the moving end of the molecule is pulled through an elastic force
- the center of the corresponding harmonic potential moves at v = const
- the force on the molecule can be measured as a function of the elongation

Constant force:


- the force on the molecule is kept constant using a feedback apparatus
- elongation is measured as a function of time

Pulling Poly–Titin (I27): AFM, v = const

Worm Like Chain fits ⇒ contour length (and variations)

Pulling an RNA hairpin, f = const

2-state behaviour is clearly observed at $f \simeq f_u$

A recent theoretical review

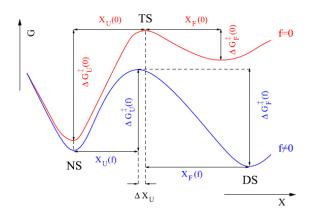
Physics Reports 486 (2010) 1-74

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Biomolecules under mechanical force


Sanjay Kumara,*, Mai Suan Lib,*

^a Department of Physics, Banaras Hindu University, Varanasi 221 005, India

b Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Mechanical unfolding: a simple theory

Elongation is a natural reaction coordinate ⇒ Bell's model

Theory: f = const

Assuming TS is not moved by *f*:

$$\Delta G_{u}^{\dagger}(f) = \Delta G_{u}^{\dagger}(0) - fx_{u}$$

$$k_{u}(f) = k_{u}(0) \exp\left(\frac{fx_{u}}{k_{B}T}\right)$$
(1)

Similarly,

$$k_f(f) = k_f(0) \exp\left(-\frac{fx_f}{k_B T}\right)$$

Theory: f = rt, r = const

Unfolding rate at time t, force f = rt

$$k_{u}(rt) = k_{u}(t) = k_{u}(0) \exp\left(\frac{fx_{u}}{k_{B}T}\right)$$

Probability of unfolding at force f

$$P(f) = \frac{k_u(f)}{r} \exp\left\{\frac{k_B T}{r x_u} \left[k_u(0) - k_u(f)\right]\right\}$$

Most probable unfolding force $f_M = \operatorname{argmax} P(f)$

$$f_M = \frac{k_B T}{x_U} \ln \left[\frac{x_U}{k_U(0) k_B T} r \right]$$

More complex phenomena

- Intermediates: metastable states which retain only part of the native structure
- Pathway diversity: the unfolding of a protein with many intermediates can proceed through pathways which depend on the details of the pulling protocol
- Direction dependence: when the force is not applied end-to-end, but only a portion of the chain is pulled, the unfolding phenomenon depends on the application points of the force

Modeling approaches

Degrees of freedom:

- atomistic (all or heavy atoms)
- ▶ coarse–grained (C_{α} , one or a few beads per aminoacid)
- lattice polymers
- Ising-like (e.g. a binary variable per aminoacid or peptide bond)

Interactions:

- native (Gō) vs. non-native interactions
- explicit vs. implicit solvent

Ising-like models

- Galzitskaya and Finkelstein, PNAS 96, 11299 (1999)
- Alm and Baker, PNAS 96, 11305 (1999)
- Muñoz and Eaton, PNAS 96, 11311 (1999)

A binary degree of freedom m_k , taking values native/non-native (resp. 1, 0) is associated to each aminoacid or to each peptide bond \Rightarrow 2^N microstates

Can be thought of as an extremely crude discretization of a pair of dihedral angles $((\phi_i, \psi_i))$ for an aminoacid, (ψ_i, ϕ_{i+1}) for a peptide bond)

Ising—like models (cont'd)

Many more non–native conformations \Rightarrow excess entropy q ($\sim k_B$) associated to non–native value (or entropy cost associated to native)

Different (native only) contact interaction energies: contact map Δ read from the PDB putting some threshold on interatomic distances (typically 0.4–0.5 nm between nonhydrogen atoms, or 0.65–0.7 nm between C_{α} 's)

(Wako-Saitô-)Muñoz-Eaton (or ISLAND) model

A microstate (1 = native, 0 = non-native):

0000000111111111110000000000111111110111000110

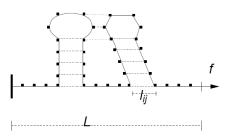
ISLANDS of 1's can be identified

Only aminoacids in the same island can interact: a non-native peptide bond (or aminoacid) breaks the chain into two non-interacting parts.

Effective free energy ("Hamiltonian")

$$H = -\sum_{i < j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^{j} m_k - T \sum_i q_i (1 - m_i)$$

 $\epsilon_{ii} \propto$ number of close–by atom pairs


(Wako-Saitô-)Muñoz-Eaton (or ISLAND) model (cont'd)

Several choices for the kinetics:

Monte Carlo simulations

diffusion on a 1D free energy profile

Mechanical unfolding: generalizing the island model

- To each island we associate an orientational degree of freedom, which in the simplest case is still Ising—like (parallel/antiparallel to the force)
- We do not need any more the introduction by hand of an excess entropy for non-native bonds
- ► The equilibrium thermodynamics is still exactly solvable
- Summing over orientational variables we get back the island model with an excess entropy $q = k_B \ln 2$

Mechanical unfolding: generalizing the island model (cont'd)

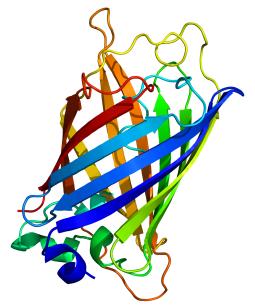
PROTEIN = sequence of rigid (native) stretches

For each stretch: native length I_{ij} , orientation $\sigma_{ij} = \pm 1$

$$H(m,\sigma) = H_0(m) - fL(m,\sigma)$$

$$H_0(m) = -\sum_{i < j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^{j} m_k$$

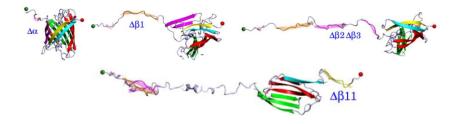
$$L(m,\sigma) = \sum_{0 \le i < j \le N+1} l_{ij} \sigma_{ij} (1 - m_i) (1 - m_j) \prod_{k=i+1}^{j-1} m_k$$


[A. Imparato, A. P. and M. Zamparo, Phys. Rev. Lett. 98, 148102 (2007)]

Summary of previous results

- 2-state behaviour in agreement with theory and experiments (PRL '07, JCP '07)
- Ubiquitin 3-state behaviour: intermediate has same structure as in all-atom models. Multi-stage refolding as in experiments (PRL '08)
- Multi(5)—state behaviour in an RNA fragment: pathways consistent with experiments and coarse—grained models (PRL '09)
- Pathway diversity in a fibronectin domain (JCP '10)

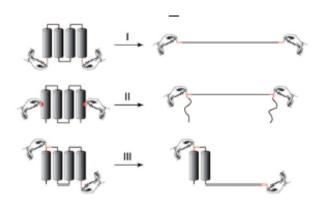
Green Fluorescent Protein (GFP)

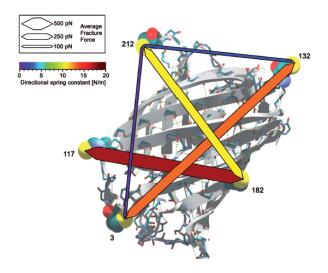


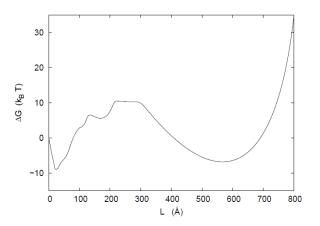
Green Fluorescent Protein (GFP)


- Large protein: 238 aminoacids
- Bright green fluorescence when exposed to light of a suitable wavelength (395 nm, blue) AND native structure is intact
- Applications in biotechnology
 - localization of proteins in living cells
 - metal ion or pH sensors

Experiments: pulling GFP end—to—end (Reif et al, PNAS '07)

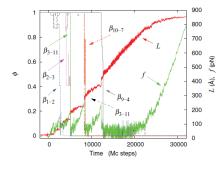

Major unfolding pathway


Minor unfolding pathway


Pulling a protein from different directions

Experiments: pulling GFP from different directions (Reif et al, PNAS '06)

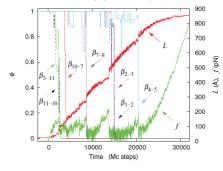
Model: landscape (at equilibrium unfolding *f*)


Intermediates: β_1 and β_{11} (\sim 110 Å), $\beta_{10}\beta_{11}$ (\sim 180 Å), $\beta_1\beta_2\beta_3$ (\sim 250 Å)

[A. Imparato, A. P. and M. Zamparo, Phys. Rev. E 84, 021918 (2011)]

Model: pulling end-to-end

Major unfolding pathway

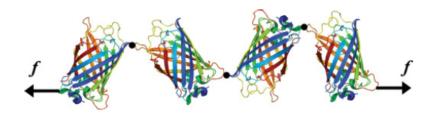


Order of unfolding events

- N–terminal α–helix (small signal)
- ▶ β₁
- \triangleright $\beta_2\beta_3$
- \triangleright $\beta_{10}\beta_{11}$
- all the rest

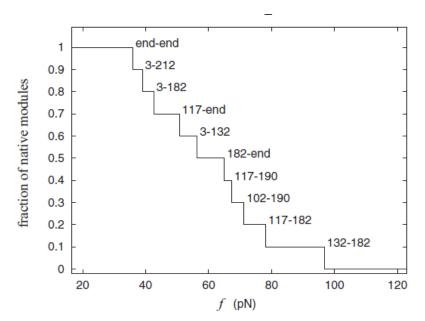
Model: pulling end-to-end

Minor unfolding pathway


Order of unfolding events

- N–terminal α–helix (small signal)
- ▶ β₁₁

Model: pulling from different directions


Direction	Unfolding force (pN)		
	$v = 0.3 \mu\text{m/s}$	$v = 2 \mu\text{m/s}$	$v = 3.6 \mu \text{m/s}$
end-end	140 ± 3 $(104 \pm 40)^{a}$	177 ± 7	184 ± 13
182-end	196 ± 7	226 ± 6	244 ± 7
3–212	244 ± 12	298 ± 12	317 ± 20 $(117 \pm 19)^{b}$
132–212	251 ± 7	266 ± 3	273 ± 6 $(127 \pm 23)^{b}$
132-end	306 ± 12	360 ± 20	381 ± 26
182–212	365 ± 2	390 ± 7	409 ± 15 $(356 \pm 61)^{b}$
3–132	383 ± 16	471 ± 49 $(346 \pm 46)^{b}$	535 ± 80
117–182	467 ± 3	501 ± 11	512 ± 11 $(548 \pm 57)^{b}$

GFP as a force sensor

http://pre.aps.org/kaleidoscope/pre/84/2/021918

GFP as a force sensor

Coworkers:

- Marco Zamparo (Padova University)
- Alberto Imparato (Aarhus University, Denmark)
- Michele Caraglio (PoliTO)

Main Refs for our work:

- A. Imparato, A. P. and M. Zamparo, Phys. Rev. Lett. 98, 148102 (2007).
- P. Bruscolini, A. P. and M. Zamparo, Phys. Rev. Lett. 99, 038103 (2007).
- A. Imparato, A. P. and M. Zamparo, J. Chem. Phys. 127, 145105 (2007).
- A. Imparato and A. P., Phys. Rev. Lett. **100**, 158104 (2008).
- A. Imparato, A. P. and M. Zamparo, Phys. Rev. Lett. 103, 188102 (2009).
- M. Caraglio, A. Imparato and A. P., J. Chem. Phys. 133, 065101 (2010).
- M. Caraglio, A. Imparato and A. P., Phys. Rev. E 84, 021918 (2011).

Thanks for your attention