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why isospin breaking?

we do have a lot of precise experimental measurements in the quark flavour sector of the standard model that, combined with
CKM unitarity (first row), allow us to measure hadronic matrix elements

a simple example from FLAVIAnet kaon working group M.Antonelli et al. Eur.Phys.J.C69

8>>>><>>>>:

˛̨̨
VusFK
VudFπ

˛̨̨
= 0.27599(59)

˛̨̨
Vusf

Kπ
+ (0)

˛̨̨
= 0.21661(47)

8>><>>:
|Vud|2 + |Vus|2 = 1

|Vud| = 0.97425(22)

where |Vud| comes by combining 20 super-allowed nuclear β-decays and |Vub| has been neglected because smaller than the
uncertainty on the other terms, combine to give

|Vus| = 0.22544(95)

f
Kπ
+ (0) = 0.9608(46)

FK

Fπ
= 1.1927(59)

20 M. Antonelli et al.: Evaluation of |Vus| and Standard Model tests from kaon data

Mode |Vus|f+(0) % err BR τ ∆ Int Correlation matrix (%)
KL → πeν 0.2163(6) 0.26 0.09 0.20 0.11 0.06 +55 +10 +3 0
KL → πµν 0.2166(6) 0.29 0.15 0.18 0.11 0.08 +6 0 +4
KS → πeν 0.2155(13) 0.61 0.60 0.03 0.11 0.06 +1 0
K± → πeν 0.2160(11) 0.52 0.31 0.09 0.40 0.06 +73
K± → πµν 0.2158(14) 0.63 0.47 0.08 0.39 0.08
Average 0.2163(5)

Table 14. Values of |Vus|f+(0) as determined from each kaon decay mode, with approximate contributions to relative uncertainty
(% err) from branching ratios (BR), lifetimes (τ ), combined effect of δK!

EM and δK!
SU(2) (∆), and phase space integrals (Int).

comparison with Eq. (9), rµe is equal to the ratio g2
µ/g2

e ,
with g! the coupling strength at the W → !ν vertex. In
the SM, rµe = 1.

Before the advent of the new BR measurements de-
scribed in Sects. 3.2 and 3.4, the values of |Vus|f+(0) from
Ke3 and Kµ3 rates were in substantial disagreement. Us-
ing the KL and K± BRs from the 2004 edition of the PDG
compilation [100] (and assuming current values for the I!3

and δK!
EM), we obtain rµe = 1.013(12) for K± decays and

1.040(13) for KL decays.
As noted in Sect. 3.2, the new BR measurements pro-

cure much better agreement. From the entries in Table 14,
we calculate rµe separately for charged and neutral modes
(including the value of |Vus|f+(0) from KS → πeν de-
cays, though this has little impact) and obtain 0.998(9)
and 1.003(5), respectively. The results are compatible; the
average value is rµe = 1.002(5). As a statement on the
lepton-flavor universality hypothesis, we note that the sen-
sitivity of this test approaches that obtained with π →
!ν decays ((rµe) = 1.0042(33) [138]) and τ → !νν̄ de-
cays ((rµe) = 1.000(4) [139]). Alternatively, if the lepton-
universality hypothesis is assumed to be true, the equiva-
lence of the values of |Vus|f+(0) from Ke3 and Kµ3 demon-
strates that the calculation of the long-distance correc-
tions δK!

EM is accurate to the per-mil level.

4.4 Determination of |Vus/Vud| × fK/fπ

As noted in Sect. 2.1, Eq. (2) allows the ratio |Vus/Vud| ×
fK/fπ to be determined from experimental information on
the radiation-inclusive K!2 and π!2 decay rates. The lim-
iting uncertainty is that from BR(Kµ2(γ)), which is 0.28%
as per Table 6. Using this, together with the value of τK±

from the same fit and Γ (π± → µ±ν) = 38.408(7) µs−1 [87]
we obtain

|Vus/Vud| × fK/fπ = 0.2758(5). (55)

4.5 Test of CKM unitarity

We determine |Vus| and |Vud| from a fit to the results
obtained above. As starting points, we use the value
|Vus|f+(0) = 0.2163(5) given in Table 14, together with
the lattice QCD estimate f+(0) = 0.959(5) (Eq. (17)).
We also use the result |Vus/Vud| × fK/fπ = 0.2758(5)
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Fig. 10. Results of fits to |Vud|, |Vus|, and |Vus/Vud|.

discussed in Sect. 4.4 together with the lattice estimate
fK/fπ = 1.193(6) (Sect. 2.1.1). Thus we have

|Vus| = 0.2254(13) [K!3 only],
|Vus/Vud| = 0.2312(13) [K!2 only].

(56)

Finally, we use the evaluation |Vud| = 0.97425(22) from
a recent survey [140] of half-life, decay-energy, and BR
measurements related to 20 superallowed 0+ → 0+ nu-
clear beta decays, which includes a number of new, high-
precision Penning-trap measurements of decay energies,
as well as the use of recently improved electroweak ra-
diative corrections [141] and new isospin-breaking correc-
tions [142], in addition to other improvements over past
surveys by the same authors. Our fit to these inputs gives

|Vud| = 0.97425(22),

|Vus| = 0.2253(9) [K!3, K!2, 0+ → 0+],
(57)

with χ2/ndf = 0.014/1 (P = 91%) and negligible corre-
lation between |Vud| and |Vus|. With the current world-
average value, |Vub| = 0.00393(36) [87], the first-row uni-
tarity sum is then ∆CKM = |Vud|2 + |Vus|2 + |Vub|2 − 1 =
−0.0001(6); the result is in striking agreement with the
unitarity hypothesis. (Note that the contribution to the
sum from |Vub| is essentially negligible.) As an alternate
expression of this agreement, we may state a value for

lattice QCD is still needed to postdict these quantities and, in case, to falsify the standard model



FK/Fπ & fKπ+ (0) summary from FLAG

concerning theoretical predictions, and lattice QCD in particular, these matrix elements are among the well known quantities
G.Colangelo et al. arXiv:1011.4408

arXiv:1005.2323 [hep-ph]

arXiv:1011.4408 [hep-lat]
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f
Kπ
+ (0) = 0.956(8) ∼ 0.8%

FK

Fπ
= 1.193(5) ∼ 0.5%

to do better we should include effects that we have been neglecting up to now. . .



FK/Fπ & fKπ+ (q2) beyond the isospin limit

there are two sources of isospin breaking effects,

mu 6= md| {z }
QCD

eu 6= ed| {z }
QED

in the particular and (lucky) case of these observables, the correction to the isospin symmetric limit due to the difference of
the up and down quark masses (QCD) can be estimated in chiral perturbation theory,

8>>>>>><>>>>>>:

fKπ+ (0) = 0.956(8) ∼ 0.8%

0@ fK
+π0

+ (q2)

fK
0π−

+ (q2)
− 1

1A
QCD

= 0.029(4)

A. Kastner, H. Neufeld Eur.Phys.J.C57 (2008)

8>>>>><>>>>>:

FK
Fπ

= 1.193(5) ∼ 0.5%

„
F
K+/Fπ+
FK/Fπ

− 1

«
QCD

= −0.0022(6)

V. Cirigliano, H. Neufeld arXiv:1102.0563

we need first principle lattice QCD calculations to avoid uncertainties coming from the effective theory

but the home message is: reducing the error on these quantities without taking into account isospin breaking is useless. . .
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the gauge configurations

β amLud amLs L/a Nconf a (fm) ZP (MS, 2GeV )

3.80 0.0080 0.0194 24 150 0.0977(31) 0.411(12)
0.0110 24 150

3.90 0.0030 0.0177 32 150 0.0847(23) 0.437(07)
0.0040 32 150
0.0040 24 150
0.0064 24 150
0.0085 24 150
0.0100 24 150

4.05 0.0030 0.0154 32 150 0.0671(16) 0.477(06)
0.0060 32 150
0.0080 32 150

4.20 0.0020 0.0129 48 100 0.0536(12) 0.501(20)
0.0065 32 150

gauge configurations for this study have been taken from the gauge ensambles made publicly available by the ETMC
collaboration

caveat: the Twisted Mass discretization breaks isospin at finite lattice spacing

we have been working in a mixed-action setup by introducing O(a2) errors coming from violations of unitarity

in what follows I shall illustrate our method without discussing these technical details by thinking to a isospin-symmetric
lattice regularization



isospin breaking on the lattice

the calculation of QED isospin breaking effects on the lattice it has been don for the first time in
Duncan, Eichten, Thacker, Phys. Rev. Lett. 76 (1996)

QED is treated in the quenched approximation in its “compact” formulation

because the photons are massless and unconfined this approach may introduce large finite volume effects. . .

we shall come back on QED effects later in this talk

the calculation of QCD isospin breaking effects on the lattice poses a theoretical problem

Z =

Z
DUDψ e

−Sg [U]+Sf [U;mu,md]

=

Z
DU e

−Sg [U]
det(D[U ] +mu) det(D[U ] +md)| {z }

must be >0

if mu 6= md this can be only achieved by recurring to non (ultra) local and, consequently, very expensive fermion
formulations (overlap)

furthermore the effect is very small and it can be extremely difficult to see it with limited statistical accuracy



our QCD isospin breaking on the lattice

our idea is to calculate QCD isospin corrections at first order in εud = (md −mu)/2:

S = ū (D[U ] +mu)u + d̄ (D[U ] +md) d

= ū (D[U ] +mud)u + d̄ (D[U ] +mud) d| {z }
S0

−

εudŜz }| {
md −mu

2
(ūu− d̄d)

the calculation of an observable proceeds as follows

〈O〉 −∆〈O〉 =

R
DU e−Sg [U]−S0[U]+εudŜ OR
DU e−Sg [U]−S0[U]+εudŜ

=

R
DU e

−Sg [U]−S0
f [U]

(1 + εudŜ) OR
DU e

−Sg [U]−S0
f

[U]
(1 + εudŜ)

= 〈O〉 + εud〈Ŝ O〉 − εud〈Ŝ〉| {z }
=0



our QCD isospin breaking on the lattice

to insert ūu− d̄d within a correlation function amounts (after Wick contractions) to calculate the same observables but
with light propagators squared

Su = 1
D[U]+mud−εud

=
1

D[U ] +mud
+

εud

(D[U ] +mud)2

SD = 1
D[U]+mud+εud

=
1

D[u] +mud
− εud

(D[U ] +mud)2

relations that can be represented diagrammatically as

u
= + + · · ·

d
= − + · · ·



our QCD isospin breaking on the lattice: two point functions

at first order in εud pion mass and decay constants don’t get a correction (here π± but it works also for π0 because

〈π‖Ŝ‖π〉 = 〈1, I3‖1, 0‖1, I3〉 = 0)

u

d

= + − + · · · = +O(ε
2
ud)

the kaons do get a correction

C
K+K− (t) = −

s

u

= − − +O(ε
2
ud)

C
K0K0 (t) = −

s

d

= − + +O(ε
2
ud)

this means that at first order (δ. stays for relative error while ∆. for absolute error),

δu

„
FK

Fπ

«
=

∆uFK

FK
− ∆uFπ

Fπ
=
FK − FK+

FK



what do we expect from “corrected” correlation functions?

let’s consider the euclidean correlation function in the full perturbed theory, C
K+K− (t), and in the symmetric unperturbed

theory, CKK(t):

C
K+K− (t) =

X
~x

〈ūγ5s(~x, t) s̄γ5u(0)〉 =
X
n

〈0|ūγ5s(0)|nεud 〉 〈nεud |s̄γ5u(0)|0〉 e−E
εud
n t

=
G2
K+

2E
K+

e
−E

K+ t + · · ·

CKK(t) =
G2
K

2EK
e
−EKt + · · ·

where the fact that the leading exponential is the same is not obvious and follows from the fact that our perturbation Ŝ is flavour
diagonal (e.g. does not happen for insertions of the weak hamiltonian)

by using non degenerate perturbation theory (I3 is conserved), we have

E
K+ = EK −∆EK = EK + εud〈K|Ŝ|K〉

|K+〉 = |K〉 − |∆K〉 = |K〉 + εud
X
n 6=K

|n〉 〈n|Ŝ|K〉
EK − En



what do we expect from “corrected” correlation functions?

− =
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our QCD isospin breaking on the lattice: kaons two point functions
aE

Kef
f (t
)

0.2

0.3

0.4

0.5

0.6

at
5 10 15 20 25

E2
K(p) = M2

K + p2

δ 
C

K
K
(p

,t)
 / 

aε
udL

−125

−100

−75

−50

−25

0

25

at
5 10 15 20 25

∆EK(p) =
MK∆MKq
M2
K

+p2

by considering pseudoscalar-pseudoscalar correlators and by taking into account the finite time extent of the lattice, we fit
correlations at different ~p according to,

δCKK(~p, t) = δ

 
G2
Ke
−EKT/2

2EK

!
+ ∆EK(t− T/2) tanh [EK(t− T/2)] + . . .

and extract FK and δFK according to

FK = (ms +mud)
GK

M2
K

δFK =
εud

ms +mud
+ δGK − 2δMK



our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the slopes correspond to ∆EK?

(a
E

K
)2

0.05

0.075

0.1

0.125

0.15

0.175

(ap)2
0 0.025 0.05 0.075 0.1

E2
K(p) = M2

K + p2

Δ
 E

K
 / 

ε u
dL

2
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4

4.5

5

(ap)2
0 0.025 0.05 0.075 0.1

∆EK(p) =
MK∆MKq
M2
K

+p2

the solid lines are not fitted, but theoretically predicted by using calculated M and ∆M

this kind of accuracy on kinematics at p 6= 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)

ψ(x + L) = e
iθ
ψ(x) −→ p =

θ

L
+

2πn

L



our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the slopes intercepts to δFK?

aF
K
 ×

 1
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0.32
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F K
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udL
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the solid lines are not fitted, but drawn by using FK(p = 0) and δFK(p = 0)

this kind of accuracy on kinematics at p 6= 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)

ψ(x + L) = e
iθ
ψ(x) −→ p =

θ

L
+

2πn

L



extracting [md −mu]QCD: QED corrections

in order to extract 2ε
QCD
ud

= [md −mu]QCD we need experimental inputs and we cannot neglect QED corrections

If we work at first order in the QED coupling constant and εud and neglect terms of O(αemεud), the relevant Feynman
diagrams entering kaons two point functions are

∆CKK(t) = − e2d − e2u
2

− es
ed − eu

+O(αemεud)

the electromagnetic corrections to CKK(t) are logarithmically divergent, corresponding to the renormalization of the
quark masses, and the separation of QED and QCD effects is ambiguous (prescription dependent)

in the chiral limit QED corrections to M2
K0 −M2

K+ and M2
π0 −M2

π+ are the same (Dashen’s theorem)

beyond the chiral limit violations to Dashen’s theorem are parametrized in term of small parameters
εγ from FLAG: G.Colangelo et al. arXiv:1011.4408

εγ = 0.7(5) ←− our prescription

h
M

2
K0 −M2

K+

iQCD
=
h
M

2
K0 −M2

K+

iexp − (1 + εγ)
h
M

2
π0 −M2

π+

iexp
= 6.05(63)× 10

3 MeV2



extracting [md −mu]QCD: chiral-continuum extrapolations
Δ

 M
K2
 / 

ε u
d (

M
eV

) 
× 

10
-3

1.8

2

2.2

2.4

2.6

2.8

mud (MeV)
0 10 20 30 40 50 60

[md −mu]
QCD

(MS, 2GeV ) = 2ε
QCD
ud

= 2.29(5)(24) MeV

chiral perturbation theory formulae can be derived from known results
nf = 2 + 1: Gasser and Leutwyler Nucl. Phys. B250(1985)

non unitary nf = 2: S.Sharpe Phys. Rev. D56(1997)

∆M2
K

εud
= B0

n
1 + 2(mud +ms)B̂0(2α8 − α5) + 4mudB̂0(2α6 − α4)

+B̂0ms log(2B̂0ms) + B̂0
ms +mud

ms −mud

h
ms log(2B̂0ms)−mud log(2B̂0mud)

i)

where αi are low energy constants and B̂0 = 2B0/(4πF
2
0 )



calculating δFQCDK : chiral-continuum extrapolations
δ 

F K
 / 

ε u
d (

M
eV

-1
) 

× 
10

3

1

1.5

2

2.5

3

3.5

mud (MeV)
0 10 20 30 40 50 60

"
F
K+/Fπ+

FK/Fπ
− 1

#QCD
= −0.00376(29)(4)

to be compared with

"
F
K+/Fπ+

FK/Fπ
− 1

#χpt
= −0.0022(6)

chiral perturbation theory formulae can be derived from known results
nf = 2 + 1: Gasser and Leutwyler Nucl. Phys. B250(1985)

non unitary nf = 2: S.Sharpe Phys. Rev. D56(1997)

δFK

εud
=
B0

2

(
α5 − B̂0

1

ms −mud

h
ms log(2B̂0ms)−mud log(2B̂0mud)

i)

where αi are low energy constants and B̂0 = 2B0/(4πF
2
0 )



calculating Mn −Mp
aM

bef
f (t
)

0.2

0.4

0.6

0.8

1

1.2

at
0 5 10 15 20

δ 
C

bb
(t

)/
 a

ε u
dL

−40

−30

−20

−10

0

10

at
2 4 6 8 10 12 14 16

the calculation of the neutron-proton mass difference proceeds along the same lines as in the K0-K+ case

CNN (t) = − + = Wbe
−Mbt + · · ·

δCbb(t) = −
− −

− +

+
− −

− +

= δWb − t∆Mb + · · ·



calculating Mn −Mp

Δ
 M

b /
 ε

ud

0.8

1

1.2

1.4

1.6

1.8

mud (MeV)
0 10 20 30 40 50 60

ˆ
Mn −Mp

˜QCD
= 2ε

QCD
ud

"
∆Mb

εud

#QCD
= 2.8(8)(3) MeV

δCbb(t) = −
− −

− +

+
− −

− +

= δWb − t∆Mb + · · ·

here the results are at fixed lattice spacing a = 0.085 fm.

correlators have been compute by “Gaussian smearing” sink operators



calculating δfKπ+ (q2)

form factors parametrizing semileptonic decays can be calculated with good precision by considering double ratios of three point
correlation functions

〈π|V µsu|K〉
2
p
EπEK

=

vuuuuuuuuuuuut
= [ 

R
0 K

π(
t)

 ]
1/

2

0.6

0.7

0.8

0.9

1

1.1

at
0 2 4 6 8 10 12 14 16 18 20 22 24

and

〈π|V 0
su|K〉 = (EK + Eπ)f

Kπ
+ + (EK − Eπ)f

Kπ
−

〈π|~Vsu|K〉 = (~pi + ~pf )f
Kπ
+ + (~pi − ~pf )f

Kπ
−

f +K
π (
q2
)

0.6

0.7

0.8

0.9

1

1.1

q2
−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1



calculating δfKπ+ (q2)

in order to calculate QCD isospin breaking corrections to K → π`ν form factors one needs to calculate,

〈π|T
Z

d
4
x S

3
(x;µ) V

µ
su

ff
|K〉 −→

8>>><>>>:
〈K̄|T

nR
d4x H∆S=1

W (x;µ) H∆S=1
W (0;µ)

o
|K〉

〈π|T
nR

d4x H∆S=1
W (x;µ) V µem

o
|K〉

a key difference with respect to the calculation of long distance effects for K → πνν and K-K̄ mixing is that the isospin
breaking correction does not induce the decay of the kaon. . .

by using perturbation theory it can be shown that the isospin breaking corrections to the matrix elements is given by (all
t-dependent and wave function contributions cancel)

δ

(
〈π|V µsu|K〉
2
p
EπEK

)
= δ

8>>>>>>>>>><>>>>>>>>>>:

vuuuuuuuuuuuut

9>>>>>>>>>>=>>>>>>>>>>;

=
1

2

8>>>>><>>>>>:
δ + δ − δ − δ

| {z }
=0

9>>>>>=>>>>>;



calculating δfKπ+ (q2)

the diagrammatic expansion in the K0 → π−`ν is

−

s u

d

= − + − +O(ε
2
ud)

and is different, because of the disconnected diagrams, from the K+ → π0`ν case

− + − = − + −

− − +

+ − +

= − − − + 2 +O(ε
2
ud)



calculating δfKπ+ (q2)
δ d

 f +K
π (q

2 )

−4×10−3

−2×10−3

0

2×10−3

q2 (GeV2)
−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

24 fK0π−
+ (0)− fKπ+ (0)

fKπ+ (0)

35QCD = 1.9(4)(2)× 10
−4

−

s u

d

= − + − +O(ε
2
ud)

in this work we have not calculated disconnected diagrams

we can only show results for the K0 → π−`ν case (above)

this is a quantity that cannot be measured directly and the missing contribution, according to χpt, is expected to be much
bigger

the results given here make us confident on the possibility of completing the calculation by including disconnected diagrams



outlooks

first results obtained by applying our method look very promising

the method is general and can be applied to many observables, even at second order: we plan to apply it to M
π+ −Mπ0

we shall also refine our results in the case of nucleon masses and form factors

and compute QED effects by ourself

first small steps toward the calculation of other observables that are relevant for phenomenological applications (long
distance effects, etc.)


