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LEVY PROCESSES 

LEVY WALKS are SUPERDIFFUSIVE PHENOMENA 

characterized by anomalous exponents:   
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Brownian Motion:  

basic model for diffusion.  

Sequence of steps of bounded   

length and random direction  

Lévy walks:  

Sequence of steps of unbounded  length and 

random direction. The probability of a long 

jump of length r decays as a power low r -ε 



LEVY WALKS and FLIGHTS 

Annealed Lévy Walks   

Annealed Lévy Flights 
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Exact results for Annealed Lévy Walks   



EXPERIMENTS 
Lévy processes have been applied  in different fields: biological systems,  

ecology, turbulent fluids, porous media, human travels and  geology. 

Experimental realization with controlled parameters  

P. Barthelemy, J. Bertolotti, and D. S. Wiersma LENS Florence 2008 

Glass spheres with diameters 

chosen according a Lévy 

distribution are packed into a 

matrix of scattering material the 

light ray performs long jumps 

across the spheres and is 

randomly deflected  by the 

scaterers. 

Typical Lèvy behaviors have 

been measured e.g. the 

transmission coefficient and its 

deviations. 

In the experiment long tail are realized using 

spheres of diameters ranging from 500 μm to 5 μm. 



TOPOLOGICAL CORRELATIONS 

In Annealed Lévy-Walks the lengths of jumps are 

randomly chosen at each step i.e. they do not 

depend on previous moves. Therefore steps are 

uncorrelated. 

  

In LENS experiments the step length is induced 

by sample topology and therefore correlated.  

E.g. after crossing a large sphere there is a high 

probability of being back scattered.  

LENS experiments have been interpreted by means of annealed Lévy 

walk: Light moves at constant velocity in the spheres, ok.  

MAIN PROBLEM 

Inorder to explain the experiment a theory characterized by 

a quenched Lévy distribution of step length is required 



1-DIMENSIONAL 
QUENCHED MODEL 
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 characterizes Lévy distribution

LEVY WALK: the particle moves ballistically (with constant velocity v) 

until it reaches a scatterer where it is transmitted or reflected with 

probability ½ [1] E. Barkai, V. Fleurov, J. Klafter, Phys. Rev. E 61 1164 (2000) 

ELECTRIC MODEL: the resistance R(r) between two contacts at distance 

r is the number of scatterers separating them [2 ] C.W.J. Beenakker, C.W. 

Groth, A.R. Akhmerov, Phys. Rev. B 79, 024204 (2009). 

v ½  ½ 



KNOWN RESULTS 
Long Levy-tails: Different average procedures provides Different results [1] 

Average performed placing random-walk starting site or electric contacts 

in any point of the structure in a scattering point 
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Resistance [2]  

Mean square 

displacement [1] 

We complete the 1-dimensional picture evaluating  <r2(t) >  averaged over 

scattering sites. Moreover we provide a general framework for the problem 

LENS experiment light enters in the system with a scattering event  

Averages performed considering scattering sites as starting point 



SCALING RELATIONS 
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[3] M.E. Cates, J. Physique 46, 1059, (1985). 

In [2] Resistance of 1-dimensional calculated analyticaly 

static problem easier than dynamic random walk: 
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LONG TAILS AND ANOMALIES 
( ) ( )p pr t tWithin scaling framework: Normal behavior 

Anomalies when dominates g(r,t)   i.e.  the regime  

r >> ℓ(t). Tails of P(r,t) provides a significant 

contributions to the mean square displacement: 

Single long-jump hypothesis: 
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Number of scatterers 
visited by the walker 
in a time  (definition of )



MEAN SQUARE DISPLACEMENT 
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Contributions to the first integral of distances r < ℓ(t) 

Contributions to the first integral of distances  r > ℓ(t) , vt is the natural 

upper cut off since particles can reach in a time t at most distance vt  

Comparing the two terms we get: 
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Anomalous 

diffusion 

Anomalous diffusion 

with  Strongly 

Anomalous exponents 

Normal diffusion 



NUMERICAL RESULTS 
Mean square 

displacement as a 

function of time 

compared with theory 

for different α’s 

Long tail of P(r,t) for α=0.3 case b) 

dashed line represent theory theory 

Long tail of P(r,t) vanishing 

with t for α=1.3 case a) 

Analythic 

approximated results 

compared with 

numeric simulations, 

i.e. Montecarlo 

smulations 

Very good 

agreement between 

theory and 

simulations, scaling 

and single jump 

hypothesis could be 

exact 



LEVY QUASICrystal 
1, 2 and 3 (d) dimensional  Lèvy  

Quasicrystal  are deterministic fractals 

where holes (dark squares) are distributed 

according to a Levy distribution.  

In 2-3 dimension different jumping rules.  

Difference depends on large scale features of 

the jumps. Results depends on the jump rule. 

 

Straight jumps. 

Head on dynamics 
Random diagonal jumps. 

Fan out dynamics 

1-dimensional Cantor Fractal 

2-dimensional Sierpinski Carpet 

SAME SCALING PICTURE 
 

            ℓ(t)  ≈  t1/z 
 

-Value of z analytically known 

only in 1d systems 

-Numerical results: z different of 

the annealed result. 

- Loacal vs. Average 

-Single long jumps provides 

strong anomalous diffusion 

 



PERSPECTIVES 
-Random case in 2-3 dimension, the 

construction (definition) of the structures 

is a non trivial problem. Packing.  

 

Differences seem to be present with 

respect the annealed case. 

arXiv:1105.4149  C. W. Groth, 

A. R. Akhmerov and C. W. J. Beenakker 

 

Randomization procedure seems to be 

a relevant parameter. 

- Rigorous proof  (without scaling hypothesis) for results in one-dimension  

- Is there a upper critical dimension where annealed and quenched model 

are the same at least for random system? 

- R. Burioni, L. Caniparoli, A. Vezzani PRE E 81, 060101(R) (2010)  

- R. Burioni, L. Caniparoli, S. Lepri and A. Vezzani PRE 81, 011127 (2010)  

- A. Vezzani, R. Burioni, L. Caniparoli, and S. Lepri, Phil.Mag. 91, 1987 (2011) 

- P. Buonsante, R. Burioni, and A. Vezzani  PRE 84, 021105 (2011) 

 


